Loading…
A Multiscale Scheme for Approximating the Quantron's Discriminating Function
Finding an accurate approximation of a discriminating function in order to evaluate its extrema is a common problem in the field of machine learning. A new type of neural network, the Quantron, generates a complicated wave function whose global maximum value is crucial for classifying patterns. To o...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2009-08, Vol.20 (8), p.1254-1266 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Finding an accurate approximation of a discriminating function in order to evaluate its extrema is a common problem in the field of machine learning. A new type of neural network, the Quantron, generates a complicated wave function whose global maximum value is crucial for classifying patterns. To obtain an analytical approximation of this maximum, we present a multiscale scheme based on compactly supported inverted parabolas. Motivated by the Quantron's architecture as well as Laplace's method, this scheme stems from the multiresolution analysis (MRA) developed in the theory of wavelets. This approximation method will be performed, first, one scale at a time and, second, as a global approach. Convergence will be proved and results analyzed. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2009.2022979 |