Loading…
Moderate Increase in Mdr1a/1b Expression Causes In vivo Resistance to Doxorubicin in a Mouse Model for Hereditary Breast Cancer
We have found previously that acquired doxorubicin resistance in a genetically engineered mouse model for BRCA1-related breast cancer was associated with increased expression of the mouse multidrug resistance (Mdr1) genes, which encode the drug efflux transporter ATP-binding cassette B1/P-glycoprote...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2009-08, Vol.69 (16), p.6396-6404 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have found previously that acquired doxorubicin resistance in a genetically engineered mouse model for BRCA1-related breast cancer was associated with increased expression of the mouse multidrug resistance (Mdr1) genes, which encode the drug efflux transporter ATP-binding cassette B1/P-glycoprotein (P-gp). Here, we show that even moderate increases of Mdr1 expression (as low as 5-fold) are sufficient to cause doxorubicin resistance. These moderately elevated tumor P-gp levels are below those found in some normal tissues, such as the gut. The resistant phenotype could be completely reversed by the third-generation P-gp inhibitor tariquidar, which provides a useful strategy to circumvent this type of acquired doxorubicin resistance. The presence of MDR1A in drug-resistant tumors with a moderate increase in Mdr1a transcripts could be shown with a newly generated chicken antibody against a mouse P-gp peptide. Our data show the usefulness of realistic preclinical models to characterize levels of Mdr1 gene expression that are sufficient to cause resistance. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-09-0041 |