Loading…
A high-throughput fluorescence–anisotropy screen that identifies small molecule inhibitors of the DNA binding of B-ZIP transcription factors
We have developed a high-throughput fluorescence anisotropy screen, using a 384-well format, to identify small molecules that disrupt the DNA binding of B-ZIP proteins. Binding of a B-ZIP dimer to fluorescently labeled DNA can be monitored by fluorescence anisotropy. We screened the National Cancer...
Saved in:
Published in: | Analytical biochemistry 2005-05, Vol.340 (2), p.259-271 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a high-throughput fluorescence anisotropy screen, using a 384-well format, to identify small molecules that disrupt the DNA binding of B-ZIP proteins. Binding of a B-ZIP dimer to fluorescently labeled DNA can be monitored by fluorescence anisotropy. We screened the National Cancer Institute diversity set of 1990 compounds to identify small molecules that disrupt the B-ZIP|DNA complex of CREB, C/EBPβ, VBP, and AP-1 (FOS|JUND) bound to their cognate DNA sequence. We identified 21 compounds that inhibited the DNA binding of at least one B-ZIP protein, and 12 representative compounds were grouped depending on whether they displaced ethidium bromide from DNA. Of the 6 compounds that did not displace ethidium bromide, 2 also inhibited B-ZIP binding to DNA in a secondary electrophoretic mobility shift assay screen with some specificity. Thermal stability monitored by circular dichroism spectroscopy demonstrated that both compounds bound the basic region of the B-ZIP motif. NSC13778 preferentially binds C/EBPα 1000-fold better than it binds C/EBPβ. Chimeric proteins combining C/EBPα and C/EBPβ mapped the binding of NSC13778 to three amino acids immediately N terminal of the leucine zipper of C/EBPα. These experiments suggest that the DNA binding of B-ZIP transcription factors is a potential target for clinical intervention. |
---|---|
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/j.ab.2005.02.012 |