Loading…

Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography

The ability of ultra-high-resolution optical coherence tomography (UHR OCT) to discriminate between healthy and pathological human brain tissue is examined by imaging ex vivo tissue morphology of various brain biopsies. Micrometer-scale OCT resolution (0.9x2 microm, axialxlateral) is achieved in bio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical optics 2005-01, Vol.10 (1), p.11006-11006
Main Authors: Bizheva, Kostadinka, Unterhuber, Angelika, Hermann, Boris, Povazay, Boris, Sattmann, Harald, Fercher, A F, Drexler, Wolfgang, Preusser, Matthias, Budka, Herbert, Stingl, Andreas, Le, Tuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability of ultra-high-resolution optical coherence tomography (UHR OCT) to discriminate between healthy and pathological human brain tissue is examined by imaging ex vivo tissue morphology of various brain biopsies. Micrometer-scale OCT resolution (0.9x2 microm, axialxlateral) is achieved in biological tissue by interfacing a state-of-the-art Ti:Al2O3 laser (lambda(c)=800 nm, delta lambda=260 nm, and P(out)=120 mW exfiber) to a free-space OCT system utilizing dynamic focusing. UHR OCT images are acquired from both healthy brain tissue and various types of brain tumors including fibrous, athypical, and transitional meningioma and ganglioglioma. A comparison of the tomograms with standard hematoxylin and eosin (H&E) stained histological sections of the imaged biopsies demonstrates the ability of UHR OCT to visualize and identify morphological features such as microcalcifications (>20 microm), enlarged nuclei of tumor cells (approximately 8 to 15 microm), small cysts, and blood vessels, which are characteristic of neuropathologies and normally absent in healthy brain tissue.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.1851513