Loading…

Variation in aluminum resistance among arbuscular mycorrhizal fungi

Arbuscular mycorrhizal (AM) fungi mediate interactions between plants and soils, and are important where nutrient or metal concentrations limit plant growth. Variation in fungal response to edaphic conditions may influence the effectiveness of the plant-mycorrhizal association in some soil environme...

Full description

Saved in:
Bibliographic Details
Published in:Mycorrhiza 2005-05, Vol.15 (3), p.193-201
Main Authors: Kelly, C.N, Morton, J.B, Cumming, J.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arbuscular mycorrhizal (AM) fungi mediate interactions between plants and soils, and are important where nutrient or metal concentrations limit plant growth. Variation in fungal response to edaphic conditions may influence the effectiveness of the plant-mycorrhizal association in some soil environments. Andropogon virginicus (broomsedge) colonizes disturbed sites in the eastern United States, including acidic mine soils where aluminum (Al) is phytotoxic, and Al resistance in broomsedge has been associated with colonization by the AM fungus Glomus clarum. In the present study, inter- and intra-specific variation to confer Al resistance to broomsedge was assessed among selected species of AM fungi. Broomsedge seeds were grown in sand culture inoculated with one of five isolates of three species of fungi (G. clarum, Acaulospora morrowiae, and Scutellospora heterogama). Plants were exposed to 0 or 400 microM Al in nutrient solution and harvested after 4 or 9 weeks of growth. Mean infection percentage, plant biomass, and plant tissue Al and phosphorus (P) concentrations were measured. G. clarum conferred the greatest Al resistance to broomsedge, with the lowest variability among isolates for colonization and growth inhibition by Al [tolerance indices (TI) between 22.4 and 92.7%]. Broomsedge plants colonized by A. morrowiae were consistently the most sensitive to Al, with little variation among isolates (TI between 1.6 and 12.1%). Al resistance by S. heterogama isolates was intermediate and wide-ranging (TI between 3.9 and 40.0%). Across all AM fungal isolates, resistance was associated with high rates of colonization and low tissue Al concentrations of broomsedge plants. The functional diversity in Al resistance displayed by these AM fungi reflect variation in acclimation mechanisms operating in the mycorrhizal symbiosis under environmental stress.
ISSN:0940-6360
1432-1890
DOI:10.1007/s00572-004-0321-6