Loading…
An efficient and high-throughput approach for experimental validation of novel human gene predictions
A highly automated RT-PCR-based approach has been established to validate novel human gene predictions with no prior experimental evidence of mRNA splicing (ab initio predictions). Ab initio gene predictions were selected for high-throughput validation using predicted protein classification, sequenc...
Saved in:
Published in: | Genomics (San Diego, Calif.) Calif.), 2006-04, Vol.87 (4), p.437-445 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A highly automated RT-PCR-based approach has been established to validate novel human gene predictions with no prior experimental evidence of mRNA splicing (ab initio predictions). Ab initio gene predictions were selected for high-throughput validation using predicted protein classification, sequence similarity to other genomes, colocalization with an MPSS tag, or microarray expression. Initial microarray prioritization followed by RT-PCR validation was the most efficient combination, resulting in approximately 35% of the ab initio predictions being validated by RT-PCR. Of the 7252 novel genes that were prioritized and processed, 796 constituted real transcripts. In addition, high-throughput RACE successfully extended the 5′ and/or 3′ ends of >60% of RT-PCR-validated genes. Reevaluation of these transcripts produced 574 novel transcripts using RefSeq as a reference. RT-PCR sequencing in combination with RACE on ab initio gene predictions could be used to define the transcriptome across all species. |
---|---|
ISSN: | 0888-7543 1089-8646 |
DOI: | 10.1016/j.ygeno.2005.11.016 |