Loading…

Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis

Near-infrared light via light-emitting diode treatment has documented therapeutic effects on neurons functionally inactivated by tetrodotoxin or methanol intoxication. Light-emitting diode pretreatment also reduced potassium cyanide-induced cell death, but the mode of death via the apoptotic or necr...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2006-01, Vol.139 (2), p.639-649
Main Authors: Liang, H.L., Whelan, H.T., Eells, J.T., Meng, H., Buchmann, E., Lerch-Gaggl, A., Wong-Riley, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Near-infrared light via light-emitting diode treatment has documented therapeutic effects on neurons functionally inactivated by tetrodotoxin or methanol intoxication. Light-emitting diode pretreatment also reduced potassium cyanide-induced cell death, but the mode of death via the apoptotic or necrotic pathway was unclear. The current study tested our hypothesis that light-emitting diode rescues neurons from apoptotic cell death. Primary neuronal cultures from postnatal rat visual cortex were pretreated with light-emitting diode for 10 min at a total energy density of 30 J/cm 2 before exposing to potassium cyanide for 28 h. With 100 or 300μM potassium cyanide, neurons died mainly via the apoptotic pathway, as confirmed by electron microscopy, Hoechst 33258, single-stranded DNA, Bax, and active caspase-3. In the presence of caspase inhibitor I, the percentage of apoptotic cells in 300μM potassium cyanide was significantly decreased. Light-emitting diode pretreatment reduced apoptosis from 36% to 17.9% (100μM potassium cyanide) and from 58.9% to 39.6% (300μM potassium cyanide), representing a 50.3% and 32.8% reduction, respectively. Light-emitting diode pretreatment significantly decreased the expression of caspase-3 elicited by potassium cyanide. It also reversed the potassium cyanide-induced increased expression of Bax and decreased expression of Bcl-2 to control levels. Moreover, light-emitting diode decreased the intensity of 5-(and -6) chloromethy-2′, 7-dichlorodihydrofluorescein diacetate acetyl ester, a marker of reactive oxygen species, in neurons exposed to 300μM potassium cyanide. These results indicate that light-emitting diode pretreatment partially protects neurons against cyanide-induced caspase-mediated apoptosis, most likely by decreasing reactive oxygen species production, down-regulating pro-apoptotic proteins and activating anti-apoptotic proteins, as well as increasing energy metabolism in neurons as reported previously.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2005.12.047