Loading…

Phosphorylation of β-Catenin by Cyclic AMP-dependent Protein Kinase

β-Catenin is a signaling molecule that promotes cell proliferation by the induction of gene transcription through the activation of T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors. The canonical mechanism of the regulation of β-catenin involves its phosphorylation by casein...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-04, Vol.281 (15), p.9971-9976
Main Authors: Taurin, Sebastien, Sandbo, Nathan, Qin, Yimin, Browning, Darren, Dulin, Nickolai O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:β-Catenin is a signaling molecule that promotes cell proliferation by the induction of gene transcription through the activation of T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors. The canonical mechanism of the regulation of β-catenin involves its phosphorylation by casein kinase 1 at the Ser-45 site and by glycogen synthase kinase 3 (GSK3) at the Thr-41, Ser-37, and Ser-33 sites. This phosphorylation targets β-catenin to ubiquitination and degradation by the proteasome system. Mitogenic factors promote β-catenin signaling through the inhibition of GSK3, resulting in reduced β-catenin phosphorylation, its stabilization, and subsequent accumulation in the nucleus, where it stimulates TCF/LEF-dependent gene transcription. In the present study, we have shown that (i) β-catenin can be phosphorylated by protein kinase A (PKA) in vitro and in intact cells at two novel sites, Ser-552 and Ser-675; (ii) phosphorylation by PKA promotes the transcriptional activity (TCF/LEF transactivation) ofβ-catenin; (iii) mutation of Ser-675 attenuates the promoting effect of PKA; (iv) phosphorylation by PKA does not affect the GSK3-dependent phosphorylation ofβ-catenin, its stability, or intracellular localization; and (v) phosphorylation at the Ser-675 site promotes the binding of β-catenin to its transcriptional coactivator, CREB-binding protein. In conclusion, this study identifies a novel, noncanonical mechanism of modulation of β-catenin signaling through direct phosphorylation of β-catenin by PKA, promoting its interaction with CREB-binding protein.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M508778200