Loading…
Frequency response in surface-potential driven electrohydrodynamics
Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electrohydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface ca...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-03, Vol.73 (3 Pt 2), p.037302-037302, Article 037302 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electrohydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface capacitance where the net flow rate is, in general, zero while harmonic rolls as well as time-averaged vortexlike components may exist depending on the spatial symmetry and extension of the surface potential. In general, the system displays a resonance behavior at a frequency corresponding to the inverse time of the system. Different surface potentials share the common feature that the resonance frequency is inversely proportional to the characteristic length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a omega(-2) power law for surface potentials with either an even or an odd symmetry. Below resonance we also find a power law omega(alpha) with alpha being positive and dependent of the properties of the surface potential. Comparing a tanh potential and a sech potential we qualitatively find the same slip velocity, but for the below-resonance frequency response the two potentials display different power-law asymptotics with alpha=1 and alpha approximately 2, respectively. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.73.037302 |