Loading…

Identification of Rat Cysteine-Rich Secretory Protein 4 (Crisp4) as the Ortholog to Human CRISP1 and Mouse Crisp4

Cysteine-rich secretory proteins (CRISPs) are present in a diverse population of organisms and are defined by 16 conserved cysteine residues spanning a plant pathogenesis related-1 and a C-terminal cysteine-rich domain. To date, the diversification of mammalian CRISPs is evidenced by the existence o...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2006-05, Vol.74 (5), p.984-991
Main Authors: Nolan, Michael A, Wu, Leeying, Bang, Hyun J, Jelinsky, Scott A, Roberts, Kenneth P, Turner, Terry T, Kopf, Gregory S, Johnston, Daniel S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cysteine-rich secretory proteins (CRISPs) are present in a diverse population of organisms and are defined by 16 conserved cysteine residues spanning a plant pathogenesis related-1 and a C-terminal cysteine-rich domain. To date, the diversification of mammalian CRISPs is evidenced by the existence of two, three, and four paralogous genes in the rat, human, and mouse, respectively. The current study identifies a third rat Crisp paralog we term Crisp4. The gene for Crisp4 is on rat chromosome 9 within 1 Mb of both the Crisp1 and Crisp2 genes. The full-length transcript for this gene was cloned from rat epididymal RNA and encodes a protein that shares 69% and 91% similarity with human CRISP1 and mouse CRISP4, respectively. Expression of rat Crisp4 is most abundant in the epididymis, with the highest levels of transcription observed in the caput and corpus epididymis. In contrast, rat CRISP4 protein is most abundant in the corpus and cauda regions of the epididymis. Rat CRISP4 protein is also present in caudal sperm extracts, appearing as a detergent-soluble form at the predicted MWR (26 kDa). Our data identify rat Crisp4 as the true ortholog to human CRISP1 and mouse Crisp4, and demonstrate its interaction with spermatozoa in the epididymis.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.105.048298