Loading…
Tissue engineering of heart valves : Decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells
Tissue-engineered or decellularized heart valves have already been implanted in humans or are currently approaching the clinical setting. The aim of this study was to examine the migratory response of human monocytic cells toward decellularized porcine and human heart valves, a pivotal step in the e...
Saved in:
Published in: | Circulation (New York, N.Y.) N.Y.), 2005-05, Vol.111 (21), p.2792-2797 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tissue-engineered or decellularized heart valves have already been implanted in humans or are currently approaching the clinical setting. The aim of this study was to examine the migratory response of human monocytic cells toward decellularized porcine and human heart valves, a pivotal step in the early immunologic reaction.
Porcine and human pulmonary valve conduits were decellularized, and migration of U-937 monocytic cells toward extracted heart valve proteins was examined in a transmigration chamber in vitro. Homogenized tissue specimens were size fractionated by SDS-PAGE. The decellularization procedure effectively reduced the migration of human monocytes toward all heart valve tissue. However, only the antigen reduction of human pulmonary valves abolished the monocytic response (wall, 0.88+/-0.19% versus 30.20+/-3.93% migrated cells [mean+/-SEM]; cusps, 0.10+/-0.06% versus 10.24+/-1.83%) and was significantly lower (P |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/CIRCULATIONAHA.104.473629 |