Loading…

Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study

Predicting the onset of secondary energy failure after a hypoxic–ischemic insult in newborns is critical for providing effective treatment. Measuring reductions in the cerebral metabolic rate of oxygen (CMRO2) may be one method for early detection, as hypoxia–ischemia is believed to impair oxidative...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2006-05, Vol.26 (5), p.722-730
Main Authors: Tichauer, Kenneth M, Hadway, Jennifer A, Lee, Ting-Yim, Lawrence, Keith S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predicting the onset of secondary energy failure after a hypoxic–ischemic insult in newborns is critical for providing effective treatment. Measuring reductions in the cerebral metabolic rate of oxygen (CMRO2) may be one method for early detection, as hypoxia–ischemia is believed to impair oxidative metabolism. We have developed a near-infrared spectroscopy (NIRS) technique based on the Fick Principle for measuring CMRO2. This technique combines cerebral blood flow (CBF) measurements obtained using the tracer indocyanine green with measurements of the cerebral deoxy-hemoglobin (Hb) concentration. In this study, NIRS measurements of CMRO2 were compared with CMRO2 determined from the product of CBF and the cerebral arteriovenous difference in oxygen measured from blood samples. The blood samples were collected from a peripheral artery and the sagittal sinus. Eight piglets were subjected to five cerebral metabolic states created by varying the plane of anesthesia. No significant difference was found between CMRO2 measurements obtained with the two techniques at any anesthetic level (P > 0.5). Furthermore, there was a strong correlation when concomitant CMRO2 values from the two techniques were compared (R2 = 0.88, P< 0.001). This work showed that CMRO2 can be determined accurately by combining NIRS measurements of CBF and Hb. Since NIRS is safe and measurements can be obtained at the bedside, it is believed that this technique could assist in the early diagnosis of cerebral energy dysfunction after hypoxia–ischemia.
ISSN:0271-678X
1559-7016
DOI:10.1038/sj.jcbfm.9600230