Loading…
PKCdelta and mTOR interact to regulate stress and IGF-I induced IRS-1 Ser312 phosphorylation in breast cancer cells
IRS-1 (Insulin Receptor Substrate-1) is an adaptor protein important for insulin and IGF-I receptor (Insulin-like Growth Factor-IR) transduction to downstream targets. One mechanism recently identified to downregulate IGF-I or insulin receptor signaling in diabetic models is IRS-1 Ser(312) phosphory...
Saved in:
Published in: | Breast cancer research and treatment 2005-06, Vol.91 (3), p.259-269 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | IRS-1 (Insulin Receptor Substrate-1) is an adaptor protein important for insulin and IGF-I receptor (Insulin-like Growth Factor-IR) transduction to downstream targets. One mechanism recently identified to downregulate IGF-I or insulin receptor signaling in diabetic models is IRS-1 Ser(312) phosphorylation. To date, the importance of this residue in cancer is unknown. This paper identifies mechanisms leading to Ser(312) regulation in MCF-7 breast cancer cells. Whereas IGF-I phosphorylation of IRS(312) is PI (phosphatidylinositol) 3-kinase dependent, anisomycin stress treatment requires JNK activation to induce phosphorylation of IRS(312). We show that both IGF-I and anisomycin stress treatment converge downstream onto mTOR (Mammalian Target of Rapamycin) and PKCdelta (Protein Kinase C-delta) to induce IRS-1 Ser(312) phosphorylation. mTOR associates with IRS-1 and is primarily required for Ser(312) phosphorylation in response to stress or IGF-I treatment. PKCdelta binds to mTOR and its activity is also important for stress or IGF-I mediated Ser(312) phosphorylation. Thus, mTOR and PKCdelta convey diverse signals to regulate IRS-1 function. |
---|---|
ISSN: | 0167-6806 |