Loading…

Structural Analysis of Alanine Tripeptide with Antiparallel and Parallel β-Sheet Structures in Relation to the Analysis of Mixed β-Sheet Structures in Samia cynthia ricini Silk Protein Fiber Using Solid-State NMR Spectroscopy

The structural analysis of natural protein fibers with mixed parallel and antiparallel beta-sheet structures by solid-state NMR is reported. To obtain NMR parameters that can characterize these beta-sheet structures, (13)C solid-state NMR experiments were performed on two alanine tripeptide samples:...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2006-05, Vol.128 (18), p.6231-6238
Main Authors: ASAKURA, Tetsuo, OKONOGI, Michi, NAKAZAWA, Yasumoto, YAMAUCHI, Kazuo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structural analysis of natural protein fibers with mixed parallel and antiparallel beta-sheet structures by solid-state NMR is reported. To obtain NMR parameters that can characterize these beta-sheet structures, (13)C solid-state NMR experiments were performed on two alanine tripeptide samples: one with 100% parallel beta-sheet structure and the other with 100% antiparallel beta-sheet structure. All (13)C resonances of the tripeptides could be assigned by a comparison of the methyl (13)C resonances of Ala(3) with different [3-(13)C]Ala labeling schemes and also by a series of RFDR (radio frequency driven recoupling) spectra observed by changing mixing times. Two (13)C resonances observed for each Ala residue could be assigned to two nonequivalent molecules per unit cell. Differences in the (13)C chemical shifts and (13)C spin-lattice relaxation times (T(1)) were observed between the two beta-sheet structures. Especially, about 3 times longer T(1) values were obtained for parallel beta-sheet structure as compared to those of antiparallel beta-sheet structure, which could be explicable by the difference in the hydrogen-bond networks of both structures. This very large difference in T(1) becomes a good measure to differentiate between parallel or antiparallel beta-sheet structures. These differences in the NMR parameters found for the tripeptides may be applied to assign the parallel and antiparallel beta-sheet (13)C resonances in the asymmetric and broad methyl spectra of [3-(13)C]Ala silk protein fiber of a wild silkworm, Samia cynthia ricini.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja060251t