Loading…
Mechanical properties and osteoconductivity of porous bioactive titanium
Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strengt...
Saved in:
Published in: | Biomaterials 2005-10, Vol.26 (30), p.6014-6023 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3 |
container_end_page | 6023 |
container_issue | 30 |
container_start_page | 6014 |
container_title | Biomaterials |
container_volume | 26 |
creator | Takemoto, Mitsuru Fujibayashi, Shunshuke Neo, Mashashi Suzuki, Jun Kokubo, Tadashi Nakamura, Takashi |
description | Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5
M aqueous NaOH solution at 60
°C for 24
h, immersion in distilled water at 40
°C for 48
h, and heating to 600
°C for 1
h. Compression strength and bending strength were 280
MPa (0.2% offset yield strength 85.2
MPa) and 101
MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6
mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions. |
doi_str_mv | 10.1016/j.biomaterials.2005.03.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67936747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961205002358</els_id><sourcerecordid>28750578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCX0ARC3YJfsSPsEN90EpF3ZS15VzfCI8m8WA7lfrv8WhGgl27smx959xzfQj5zGjHKFNft90Y4uwKpuB2ueOUyo6KjrLhDdkwo00rByrfkg1lPW8HxfgZOc95S-ud9vw9OWPSGKnVsCG3PxF-uyWA2zX7FPeYSsDcuMU3MReMEBe_QglPoTw3cWr2McU1NzWAO7xiU0Kp8nX-QN5NNQ1-PJ0X5NfN9ePlbXv_8OPu8vt9C1Lo0sLotBzVBFqANjBpzgf0XPhRATpquGPAndaCeV2X6FEqMSrvwDOhaA_ignw5-ta0f1bMxc4hA-52bsGazCo9CKV7_SLIjZZUavMKUDIjxMuOTAvNB3Zw_HYEIcWcE052n8Ls0rNl1B4qtFv7f4X2UKGlwtYKq_jTaco6zuj_SU-dVeDqCGD95qeAyWYIuAD6kBCK9TG8Zs5fjvq1OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17372918</pqid></control><display><type>article</type><title>Mechanical properties and osteoconductivity of porous bioactive titanium</title><source>Elsevier</source><creator>Takemoto, Mitsuru ; Fujibayashi, Shunshuke ; Neo, Mashashi ; Suzuki, Jun ; Kokubo, Tadashi ; Nakamura, Takashi</creator><creatorcontrib>Takemoto, Mitsuru ; Fujibayashi, Shunshuke ; Neo, Mashashi ; Suzuki, Jun ; Kokubo, Tadashi ; Nakamura, Takashi</creatorcontrib><description>Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5
M aqueous NaOH solution at 60
°C for 24
h, immersion in distilled water at 40
°C for 48
h, and heating to 600
°C for 1
h. Compression strength and bending strength were 280
MPa (0.2% offset yield strength 85.2
MPa) and 101
MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6
mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2005.03.019</identifier><identifier>PMID: 15885769</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Bone and Bones - metabolism ; Bone and Bones - pathology ; Bone Substitutes - chemistry ; Coated Materials, Biocompatible - chemistry ; Durapatite - chemistry ; Femur - pathology ; Hot Temperature ; Male ; Materials Testing ; Mechanical properties ; Microscopy, Electron, Scanning ; Osseointegration ; Osteoconduction ; Osteointegration ; Porous titanium ; Prostheses and Implants ; Rabbits ; Surface Properties ; Surface treatment ; Temperature ; Tensile Strength ; Time Factors ; Titanium - chemistry</subject><ispartof>Biomaterials, 2005-10, Vol.26 (30), p.6014-6023</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</citedby><cites>FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15885769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takemoto, Mitsuru</creatorcontrib><creatorcontrib>Fujibayashi, Shunshuke</creatorcontrib><creatorcontrib>Neo, Mashashi</creatorcontrib><creatorcontrib>Suzuki, Jun</creatorcontrib><creatorcontrib>Kokubo, Tadashi</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><title>Mechanical properties and osteoconductivity of porous bioactive titanium</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5
M aqueous NaOH solution at 60
°C for 24
h, immersion in distilled water at 40
°C for 48
h, and heating to 600
°C for 1
h. Compression strength and bending strength were 280
MPa (0.2% offset yield strength 85.2
MPa) and 101
MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6
mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - pathology</subject><subject>Bone Substitutes - chemistry</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Durapatite - chemistry</subject><subject>Femur - pathology</subject><subject>Hot Temperature</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Microscopy, Electron, Scanning</subject><subject>Osseointegration</subject><subject>Osteoconduction</subject><subject>Osteointegration</subject><subject>Porous titanium</subject><subject>Prostheses and Implants</subject><subject>Rabbits</subject><subject>Surface Properties</subject><subject>Surface treatment</subject><subject>Temperature</subject><subject>Tensile Strength</subject><subject>Time Factors</subject><subject>Titanium - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS0EotPCX0ARC3YJfsSPsEN90EpF3ZS15VzfCI8m8WA7lfrv8WhGgl27smx959xzfQj5zGjHKFNft90Y4uwKpuB2ueOUyo6KjrLhDdkwo00rByrfkg1lPW8HxfgZOc95S-ud9vw9OWPSGKnVsCG3PxF-uyWA2zX7FPeYSsDcuMU3MReMEBe_QglPoTw3cWr2McU1NzWAO7xiU0Kp8nX-QN5NNQ1-PJ0X5NfN9ePlbXv_8OPu8vt9C1Lo0sLotBzVBFqANjBpzgf0XPhRATpquGPAndaCeV2X6FEqMSrvwDOhaA_ignw5-ta0f1bMxc4hA-52bsGazCo9CKV7_SLIjZZUavMKUDIjxMuOTAvNB3Zw_HYEIcWcE052n8Ls0rNl1B4qtFv7f4X2UKGlwtYKq_jTaco6zuj_SU-dVeDqCGD95qeAyWYIuAD6kBCK9TG8Zs5fjvq1OA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Takemoto, Mitsuru</creator><creator>Fujibayashi, Shunshuke</creator><creator>Neo, Mashashi</creator><creator>Suzuki, Jun</creator><creator>Kokubo, Tadashi</creator><creator>Nakamura, Takashi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>7TB</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20051001</creationdate><title>Mechanical properties and osteoconductivity of porous bioactive titanium</title><author>Takemoto, Mitsuru ; Fujibayashi, Shunshuke ; Neo, Mashashi ; Suzuki, Jun ; Kokubo, Tadashi ; Nakamura, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - pathology</topic><topic>Bone Substitutes - chemistry</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Durapatite - chemistry</topic><topic>Femur - pathology</topic><topic>Hot Temperature</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Microscopy, Electron, Scanning</topic><topic>Osseointegration</topic><topic>Osteoconduction</topic><topic>Osteointegration</topic><topic>Porous titanium</topic><topic>Prostheses and Implants</topic><topic>Rabbits</topic><topic>Surface Properties</topic><topic>Surface treatment</topic><topic>Temperature</topic><topic>Tensile Strength</topic><topic>Time Factors</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takemoto, Mitsuru</creatorcontrib><creatorcontrib>Fujibayashi, Shunshuke</creatorcontrib><creatorcontrib>Neo, Mashashi</creatorcontrib><creatorcontrib>Suzuki, Jun</creatorcontrib><creatorcontrib>Kokubo, Tadashi</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takemoto, Mitsuru</au><au>Fujibayashi, Shunshuke</au><au>Neo, Mashashi</au><au>Suzuki, Jun</au><au>Kokubo, Tadashi</au><au>Nakamura, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and osteoconductivity of porous bioactive titanium</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>26</volume><issue>30</issue><spage>6014</spage><epage>6023</epage><pages>6014-6023</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5
M aqueous NaOH solution at 60
°C for 24
h, immersion in distilled water at 40
°C for 48
h, and heating to 600
°C for 1
h. Compression strength and bending strength were 280
MPa (0.2% offset yield strength 85.2
MPa) and 101
MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6
mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>15885769</pmid><doi>10.1016/j.biomaterials.2005.03.019</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2005-10, Vol.26 (30), p.6014-6023 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_67936747 |
source | Elsevier |
subjects | Animals Biocompatible Materials - chemistry Bone and Bones - metabolism Bone and Bones - pathology Bone Substitutes - chemistry Coated Materials, Biocompatible - chemistry Durapatite - chemistry Femur - pathology Hot Temperature Male Materials Testing Mechanical properties Microscopy, Electron, Scanning Osseointegration Osteoconduction Osteointegration Porous titanium Prostheses and Implants Rabbits Surface Properties Surface treatment Temperature Tensile Strength Time Factors Titanium - chemistry |
title | Mechanical properties and osteoconductivity of porous bioactive titanium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20osteoconductivity%20of%20porous%20bioactive%20titanium&rft.jtitle=Biomaterials&rft.au=Takemoto,%20Mitsuru&rft.date=2005-10-01&rft.volume=26&rft.issue=30&rft.spage=6014&rft.epage=6023&rft.pages=6014-6023&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2005.03.019&rft_dat=%3Cproquest_cross%3E28750578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17372918&rft_id=info:pmid/15885769&rfr_iscdi=true |