Loading…

Mechanical properties and osteoconductivity of porous bioactive titanium

Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strengt...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2005-10, Vol.26 (30), p.6014-6023
Main Authors: Takemoto, Mitsuru, Fujibayashi, Shunshuke, Neo, Mashashi, Suzuki, Jun, Kokubo, Tadashi, Nakamura, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3
cites cdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3
container_end_page 6023
container_issue 30
container_start_page 6014
container_title Biomaterials
container_volume 26
creator Takemoto, Mitsuru
Fujibayashi, Shunshuke
Neo, Mashashi
Suzuki, Jun
Kokubo, Tadashi
Nakamura, Takashi
description Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strength and bending strength were 280 MPa (0.2% offset yield strength 85.2 MPa) and 101 MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6 mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.
doi_str_mv 10.1016/j.biomaterials.2005.03.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67936747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961205002358</els_id><sourcerecordid>28750578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCX0ARC3YJfsSPsEN90EpF3ZS15VzfCI8m8WA7lfrv8WhGgl27smx959xzfQj5zGjHKFNft90Y4uwKpuB2ueOUyo6KjrLhDdkwo00rByrfkg1lPW8HxfgZOc95S-ud9vw9OWPSGKnVsCG3PxF-uyWA2zX7FPeYSsDcuMU3MReMEBe_QglPoTw3cWr2McU1NzWAO7xiU0Kp8nX-QN5NNQ1-PJ0X5NfN9ePlbXv_8OPu8vt9C1Lo0sLotBzVBFqANjBpzgf0XPhRATpquGPAndaCeV2X6FEqMSrvwDOhaA_ignw5-ta0f1bMxc4hA-52bsGazCo9CKV7_SLIjZZUavMKUDIjxMuOTAvNB3Zw_HYEIcWcE052n8Ls0rNl1B4qtFv7f4X2UKGlwtYKq_jTaco6zuj_SU-dVeDqCGD95qeAyWYIuAD6kBCK9TG8Zs5fjvq1OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17372918</pqid></control><display><type>article</type><title>Mechanical properties and osteoconductivity of porous bioactive titanium</title><source>Elsevier</source><creator>Takemoto, Mitsuru ; Fujibayashi, Shunshuke ; Neo, Mashashi ; Suzuki, Jun ; Kokubo, Tadashi ; Nakamura, Takashi</creator><creatorcontrib>Takemoto, Mitsuru ; Fujibayashi, Shunshuke ; Neo, Mashashi ; Suzuki, Jun ; Kokubo, Tadashi ; Nakamura, Takashi</creatorcontrib><description>Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strength and bending strength were 280 MPa (0.2% offset yield strength 85.2 MPa) and 101 MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6 mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2005.03.019</identifier><identifier>PMID: 15885769</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Bone and Bones - metabolism ; Bone and Bones - pathology ; Bone Substitutes - chemistry ; Coated Materials, Biocompatible - chemistry ; Durapatite - chemistry ; Femur - pathology ; Hot Temperature ; Male ; Materials Testing ; Mechanical properties ; Microscopy, Electron, Scanning ; Osseointegration ; Osteoconduction ; Osteointegration ; Porous titanium ; Prostheses and Implants ; Rabbits ; Surface Properties ; Surface treatment ; Temperature ; Tensile Strength ; Time Factors ; Titanium - chemistry</subject><ispartof>Biomaterials, 2005-10, Vol.26 (30), p.6014-6023</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</citedby><cites>FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15885769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takemoto, Mitsuru</creatorcontrib><creatorcontrib>Fujibayashi, Shunshuke</creatorcontrib><creatorcontrib>Neo, Mashashi</creatorcontrib><creatorcontrib>Suzuki, Jun</creatorcontrib><creatorcontrib>Kokubo, Tadashi</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><title>Mechanical properties and osteoconductivity of porous bioactive titanium</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strength and bending strength were 280 MPa (0.2% offset yield strength 85.2 MPa) and 101 MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6 mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - pathology</subject><subject>Bone Substitutes - chemistry</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Durapatite - chemistry</subject><subject>Femur - pathology</subject><subject>Hot Temperature</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Microscopy, Electron, Scanning</subject><subject>Osseointegration</subject><subject>Osteoconduction</subject><subject>Osteointegration</subject><subject>Porous titanium</subject><subject>Prostheses and Implants</subject><subject>Rabbits</subject><subject>Surface Properties</subject><subject>Surface treatment</subject><subject>Temperature</subject><subject>Tensile Strength</subject><subject>Time Factors</subject><subject>Titanium - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS0EotPCX0ARC3YJfsSPsEN90EpF3ZS15VzfCI8m8WA7lfrv8WhGgl27smx959xzfQj5zGjHKFNft90Y4uwKpuB2ueOUyo6KjrLhDdkwo00rByrfkg1lPW8HxfgZOc95S-ud9vw9OWPSGKnVsCG3PxF-uyWA2zX7FPeYSsDcuMU3MReMEBe_QglPoTw3cWr2McU1NzWAO7xiU0Kp8nX-QN5NNQ1-PJ0X5NfN9ePlbXv_8OPu8vt9C1Lo0sLotBzVBFqANjBpzgf0XPhRATpquGPAndaCeV2X6FEqMSrvwDOhaA_ignw5-ta0f1bMxc4hA-52bsGazCo9CKV7_SLIjZZUavMKUDIjxMuOTAvNB3Zw_HYEIcWcE052n8Ls0rNl1B4qtFv7f4X2UKGlwtYKq_jTaco6zuj_SU-dVeDqCGD95qeAyWYIuAD6kBCK9TG8Zs5fjvq1OA</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Takemoto, Mitsuru</creator><creator>Fujibayashi, Shunshuke</creator><creator>Neo, Mashashi</creator><creator>Suzuki, Jun</creator><creator>Kokubo, Tadashi</creator><creator>Nakamura, Takashi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>7TB</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20051001</creationdate><title>Mechanical properties and osteoconductivity of porous bioactive titanium</title><author>Takemoto, Mitsuru ; Fujibayashi, Shunshuke ; Neo, Mashashi ; Suzuki, Jun ; Kokubo, Tadashi ; Nakamura, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - pathology</topic><topic>Bone Substitutes - chemistry</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Durapatite - chemistry</topic><topic>Femur - pathology</topic><topic>Hot Temperature</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Microscopy, Electron, Scanning</topic><topic>Osseointegration</topic><topic>Osteoconduction</topic><topic>Osteointegration</topic><topic>Porous titanium</topic><topic>Prostheses and Implants</topic><topic>Rabbits</topic><topic>Surface Properties</topic><topic>Surface treatment</topic><topic>Temperature</topic><topic>Tensile Strength</topic><topic>Time Factors</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takemoto, Mitsuru</creatorcontrib><creatorcontrib>Fujibayashi, Shunshuke</creatorcontrib><creatorcontrib>Neo, Mashashi</creatorcontrib><creatorcontrib>Suzuki, Jun</creatorcontrib><creatorcontrib>Kokubo, Tadashi</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takemoto, Mitsuru</au><au>Fujibayashi, Shunshuke</au><au>Neo, Mashashi</au><au>Suzuki, Jun</au><au>Kokubo, Tadashi</au><au>Nakamura, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and osteoconductivity of porous bioactive titanium</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>26</volume><issue>30</issue><spage>6014</spage><epage>6023</epage><pages>6014-6023</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Porous bioactive titanium implants (porosity of 40%) were produced by a plasma-spray method and subsequent chemical and thermal treatments of immersion in a 5 M aqueous NaOH solution at 60 °C for 24 h, immersion in distilled water at 40 °C for 48 h, and heating to 600 °C for 1 h. Compression strength and bending strength were 280 MPa (0.2% offset yield strength 85.2 MPa) and 101 MPa, respectively. For in vivo analysis, bioactive and nontreated porous titanium cylinders were implanted into 6 mm diameter holes in rabbit femoral condyles. The percentage of bone–implant contact (affinity index) of the bioactive implants (BGs) was significantly larger than for the nontreated implants (CGs) at all postimplantation times (13.5 versus 10.5, 16.7 versus 12.7, 17.7 versus 10.2, 19.1 versus 7.8 at 2, 4, 8 and 16 weeks, respectively). The percentage of bone area ingrowth showed a significant increase with the BGs, whereas with the CGs it appeared to decrease after 4 weeks (10.7 versus 9.9, 12.3 versus 13.1, 15.2 versus 9.8, 20.6 versus 8.7 at 2, 4, 8 and 16 weeks, respectively). These results suggest that porous bioactive titanium has sufficient mechanical properties and biocompatibility for clinical use under load-bearing conditions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>15885769</pmid><doi>10.1016/j.biomaterials.2005.03.019</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2005-10, Vol.26 (30), p.6014-6023
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_67936747
source Elsevier
subjects Animals
Biocompatible Materials - chemistry
Bone and Bones - metabolism
Bone and Bones - pathology
Bone Substitutes - chemistry
Coated Materials, Biocompatible - chemistry
Durapatite - chemistry
Femur - pathology
Hot Temperature
Male
Materials Testing
Mechanical properties
Microscopy, Electron, Scanning
Osseointegration
Osteoconduction
Osteointegration
Porous titanium
Prostheses and Implants
Rabbits
Surface Properties
Surface treatment
Temperature
Tensile Strength
Time Factors
Titanium - chemistry
title Mechanical properties and osteoconductivity of porous bioactive titanium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20osteoconductivity%20of%20porous%20bioactive%20titanium&rft.jtitle=Biomaterials&rft.au=Takemoto,%20Mitsuru&rft.date=2005-10-01&rft.volume=26&rft.issue=30&rft.spage=6014&rft.epage=6023&rft.pages=6014-6023&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2005.03.019&rft_dat=%3Cproquest_cross%3E28750578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-cba75b6fc73c78cf7229ed23db6cea082a1c2a7731d79054e563b6dacd13604c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17372918&rft_id=info:pmid/15885769&rfr_iscdi=true