Loading…
A generalized analysis of capillary flows in channels
Investigations on the motion of a fluid in capillary geometries have been extensively reported in the literature using both experimental and theoretical approaches. In this paper, the theories for capillary flow are generalized to a unified nonlinear second-order differential equation which takes th...
Saved in:
Published in: | Journal of colloid and interface science 2006-06, Vol.298 (2), p.880-888 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Investigations on the motion of a fluid in capillary geometries have been extensively reported in the literature using both experimental and theoretical approaches. In this paper, the theories for capillary flow are generalized to a unified nonlinear second-order differential equation which takes the effects of the entrance, the inertial forces, and the dynamic contact angle into account. An analytical solution of the differential equation is obtained in the form of a double Dirichlet series. The readily evaluated analytical solution is compared with experimental and numerical results in the literature, which shows a good agreement. It is demonstrated that this analytical approach can be used to predict capillary flows for a wide range of fluids and parallel-plate and tube geometries in a unified manner.
Capillary rise in microchannel and tube configurations. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2006.01.005 |