Loading…
The Structural Basis of Substrate Promiscuity in Glucose Dehydrogenase from the Hyperthermophilic Archaeon Sulfolobus solfataricus
The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 80 °C and utilizes an unusual, promiscuous, non-phosphorylative Entner-Doudoroff pathway to metabolize both glucose and galactose. The first enzyme in this pathway, glucose dehydrogenase, catalyzes the oxidation of glucose...
Saved in:
Published in: | The Journal of biological chemistry 2006-05, Vol.281 (21), p.14796-14804 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 80 °C and utilizes an unusual, promiscuous, non-phosphorylative Entner-Doudoroff pathway to metabolize both glucose and galactose. The first enzyme in this pathway, glucose dehydrogenase, catalyzes the oxidation of glucose to gluconate, but has been shown to have activity with a broad range of sugar substrates, including glucose, galactose, xylose, and l-arabinose, with a requirement for the glucose stereo configuration at the C2 and C3 positions. Here we report the crystal structure of the apo form of glucose dehydrogenase to a resolution of 1.8 Å and a complex with its required cofactor, NADP+, to a resolution of 2.3 Å. A T41A mutation was engineered to enable the trapping of substrate in the crystal. Complexes of the enzyme with d-glucose and d-xylose are presented to resolutions of 1.6 and 1.5 Å, respectively, that provide evidence of selectivity for the β-anomeric, pyranose form of the substrate, and indicate that this is the productive substrate form. The nature of the promiscuity of glucose dehydrogenase is also elucidated, and a physiological role for this enzyme in xylose metabolism is suggested. Finally, the structure suggests that the mechanism of sugar oxidation by this enzyme may be similar to that described for human sorbitol dehydrogenase. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M601334200 |