Loading…

The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo

The s-SHIP protein is a shorter isoform of the longer SHIP1 protein and lacks the N-terminal SH2 domain region contained in SHIP1. s-SHIP is expressed in ES cells and in enriched bone marrow stem cells, and may be controlled by a promoter within intron 5 of the ship1 gene. We therefore examined the...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2005-07, Vol.283 (2), p.503-521
Main Authors: Rohrschneider, Larry R., Custodio, Joseph M., Anderson, Tamara A., Miller, Chris P., Gu, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The s-SHIP protein is a shorter isoform of the longer SHIP1 protein and lacks the N-terminal SH2 domain region contained in SHIP1. s-SHIP is expressed in ES cells and in enriched bone marrow stem cells, and may be controlled by a promoter within intron 5 of the ship1 gene. We therefore examined the potential specificity of promoter activity in ES cells of an intron 5/intron 6 ship1 genomic segment and its tissue specificity within transgenic mice expressing GFP from this promoter region. The results indicate that s-SHIP promoter activity is specific for ES cells in vitro and for known and presumptive stem/progenitor cells throughout embryo development of the transgenic mice. Specific GFP expression was observed in the blastocyst, primordial germ cells, thymus, arterioles, osteoblasts, and skin epidermis. The epidermis/epithelium is the progenitor for hair follicles, mammary tissue, and prostate. Interestingly, each of these latter tissues acquired a few GFP-positive cells in the course of their development from the epithelial layers, and these cells express marker proteins for stem/progenitor cells. These results identify potential stem cell populations, mark these cells for analyses in normal and cancer development, and implicate s-SHIP as an important protein in stem/progenitor cell function.
ISSN:0012-1606
1095-564X
DOI:10.1016/j.ydbio.2005.04.032