Loading…
I’m not as slim as that girl: Neural bases of body shape self-comparison to media images
The aim of the present study was to assess the impact of images of slim female fashion models on healthy young women. Brain responses to images of slim-idealized bodies (active condition) and interior designs (control condition) were measured using functional neuroimaging in 18 healthy young women....
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2007-08, Vol.37 (2), p.674-681 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of the present study was to assess the impact of images of slim female fashion models on healthy young women. Brain responses to images of slim-idealized bodies (active condition) and interior designs (control condition) were measured using functional neuroimaging in 18 healthy young women. Instructions encouraged the participants to compare their own body shape/own home with the one in the images. Participants rated the level of anxiety that they experienced while exposed to the images. In the active relative to the control condition, participants activated body shape processing networks, including the lateral fusiform gyrus on both sides, the right inferior parietal lobule, the right lateral prefrontal cortex and the left anterior cingulate. The level of reported anxiety during the exposure to slim bodies correlated with established measures of shape and weight concern and with brain activations in bilateral basal ganglia, left amygdala, bilateral dorsal anterior cingulate, and left inferior lateral prefrontal cortex. Brain networks associated with anxiety induced by self-comparison to slim images may be involved in the genesis of body dissatisfaction and hence with vulnerability to eating disorders. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2007.05.039 |