Loading…
Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal
We calculate the hole and electron mobilities in naphthalene crystal from 10 to 300 Kwithin the framework of the Holstein-Peierls model coupled with first-principles density-functional-theory-projected tight-binding band structures. All the electron-phonon coupling constants, including both local an...
Saved in:
Published in: | The Journal of chemical physics 2007-07, Vol.127 (4), p.044506-044506-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We calculate the hole and electron mobilities in naphthalene crystal from 10 to 300 Kwithin the framework of the Holstein-Peierls model coupled with first-principles density-functional-theory-projected tight-binding band structures. All the electron-phonon coupling constants, including both local and nonlocal parts for inter- and intramolecular vibrations, have been taken into considerations through density functional theory. The band-hopping crossover transition temperature for the electron transport in the
c
′
axis is calculated to be around
23
K
. We have identified a few high frequency intramolecular vibrations which are very important to the charge transport in naphthalene crystal due to their comparatively large electron-phonon coupling constants. However, their contributions to the temperature dependence of mobility are minor because of the small phonon occupations and small nonlocal coupling strengths. The low frequency intermolecular modes (longitudinal optical modes) are found to be the major contributions to the temperature dependent charge transfer properties in naphthalene crystal. Even though the calculated qualitative temperature dependence is in agreement with experiment, the predicted absolute mobility is about one to two orders of magnitude larger. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2751191 |