Loading…
Ergodicity in natural earthquake fault networks
Numerical simulations have shown that certain driven nonlinear systems can be characterized by mean-field statistical properties often associated with ergodic dynamics [C. D. Ferguson, W. Klein, and J. B. Rundle, Phys. Rev. E 60, 1359 (1999); D. Egolf, Science 287, 101 (2000)]. These driven mean-fie...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-06, Vol.75 (6 Pt 2), p.066107-066107, Article 066107 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical simulations have shown that certain driven nonlinear systems can be characterized by mean-field statistical properties often associated with ergodic dynamics [C. D. Ferguson, W. Klein, and J. B. Rundle, Phys. Rev. E 60, 1359 (1999); D. Egolf, Science 287, 101 (2000)]. These driven mean-field threshold systems feature long-range interactions and can be treated as equilibriumlike systems with statistically stationary dynamics over long time intervals. Recently the equilibrium property of ergodicity was identified in an earthquake fault system, a natural driven threshold system, by means of the Thirumalai-Mountain (TM) fluctuation metric developed in the study of diffusive systems [K. F. Tiampo, J. B. Rundle, W. Klein, J. S. Sá Martins, and C. D. Ferguson, Phys. Rev. Lett. 91, 238501 (2003)]. We analyze the seismicity of three naturally occurring earthquake fault networks from a variety of tectonic settings in an attempt to investigate the range of applicability of effective ergodicity, using the TM metric and other related statistics. Results suggest that, once variations in the catalog data resulting from technical and network issues are accounted for, all of these natural earthquake systems display stationary periods of metastable equilibrium and effective ergodicity that are disrupted by large events. We conclude that a constant rate of events is an important prerequisite for these periods of punctuated ergodicity and that, while the level of temporal variability in the spatial statistics is the controlling factor in the ergodic behavior of seismic networks, no single statistic is sufficient to ensure quantification of ergodicity. Ergodicity in this application not only requires that the system be stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages in studying their spatiotemporal evolution. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.75.066107 |