Loading…

Tensor product approximation with optimal rank in quantum chemistry

Tensor product decompositions with optimal separation rank provide an interesting alternative to traditional Gaussian-type basis functions in electronic structure calculations. We discuss various applications for a new compression algorithm, based on the Newton method, which provides for a given ten...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2007-08, Vol.127 (8), p.084110-084110-14
Main Authors: Chinnamsetty, Sambasiva Rao, Espig, Mike, Khoromskij, Boris N., Hackbusch, Wolfgang, Flad, Heinz-Jürgen
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tensor product decompositions with optimal separation rank provide an interesting alternative to traditional Gaussian-type basis functions in electronic structure calculations. We discuss various applications for a new compression algorithm, based on the Newton method, which provides for a given tensor the optimal tensor product or so-called best separable approximation for fixed Kronecker rank. In combination with a stable quadrature scheme for the Coulomb interaction, tensor product formats enable an efficient evaluation of Coulomb integrals. This is demonstrated by means of best separable approximations for the electron density and Hartree potential of small molecules, where individual components of the tensor product can be efficiently represented in a wavelet basis. We present a fairly detailed numerical analysis, which provides the basis for further improvements of this novel approach. Our results suggest a broad range of applications within density fitting schemes, which have been recently successfully applied in quantum chemistry.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2761871