Loading…

Efficient algorithm for random-bond ising models in 2D

We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar netwo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2006-12, Vol.97 (22), p.227205-227205, Article 227205
Main Authors: Loh, Y L, Carlson, E W
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N;{3/2}) time or less. The method can handle continuous or discrete bond disorder and is especially efficient in the case of bond or site dilution, where it executes in O(NlnN) time near the percolation threshold. We demonstrate its feasibility on the ferromagnetic Ising model and the +/-J random-bond Ising model and discuss the regime of applicability in cases of full frustration such as the Ising antiferromagnet on a triangular lattice.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.97.227205