Loading…
Efficient algorithm for random-bond ising models in 2D
We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar netwo...
Saved in:
Published in: | Physical review letters 2006-12, Vol.97 (22), p.227205-227205, Article 227205 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N;{3/2}) time or less. The method can handle continuous or discrete bond disorder and is especially efficient in the case of bond or site dilution, where it executes in O(NlnN) time near the percolation threshold. We demonstrate its feasibility on the ferromagnetic Ising model and the +/-J random-bond Ising model and discuss the regime of applicability in cases of full frustration such as the Ising antiferromagnet on a triangular lattice. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.97.227205 |