Loading…

ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors

Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide recep...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2006-12, Vol.314 (5806), p.1792-1795
Main Authors: Chen, Yu, Corriden, Ross, Inoue, Yoshiaki, Yip, Linda, Hashiguchi, Naoyuki, Zinkernagel, Annelies, Nizet, Victor, Insel, Paul A, Junger, Wolfgang G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203
cites cdi_FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203
container_end_page 1795
container_issue 5806
container_start_page 1792
container_title Science (American Association for the Advancement of Science)
container_volume 314
creator Chen, Yu
Corriden, Ross
Inoue, Yoshiaki
Yip, Linda
Hashiguchi, Naoyuki
Zinkernagel, Annelies
Nizet, Victor
Insel, Paul A
Junger, Wolfgang G
description Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.
doi_str_mv 10.1126/science.1132559
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68252830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20035049</jstor_id><sourcerecordid>20035049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EokvhzAmIkOAWOh6vv47LCgpSBRW0B06R453QrLLJ1k4Q_PdMtRGVuOzJst9v3oz9LMRzCe-kRHOWY0t9JN4o1No_EAsJXpceQT0UCwBlSgdWn4gnOW8BWPPqsTiRVlpQEhbi_erqsvhGHYVMxfnUbigXX2ga07C_abtifUO7YQy_21z8akNxiT-wCP2mWCkuirQfh5SfikdN6DI9m9dTcf3xw9X6U3nx9fzzenVRRu3cWKoavbIOqal12ABabSHw2ME21tfGmEZGSZJi7RogxQcetNfBLzFE4gudircH330abifKY7Vrc6SuCz0NU66MQ41OHQeVQee8Xh4FUUpjpLNHQemXFtEig6__A7fDlHp-FjZT2mkOg6GzAxTTkHOiptqndhfSn0pCdRdrNcdazbFyxcvZdqp3tLnn5xwZeDMDIcfQNSn0sc33nFNuaZ1h7sWB22aO7p-O_FM0LO8avTroTRiq8DOxx_V3BKmA50JupP4C4726YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213585075</pqid></control><display><type>article</type><title>ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Chen, Yu ; Corriden, Ross ; Inoue, Yoshiaki ; Yip, Linda ; Hashiguchi, Naoyuki ; Zinkernagel, Annelies ; Nizet, Victor ; Insel, Paul A ; Junger, Wolfgang G</creator><creatorcontrib>Chen, Yu ; Corriden, Ross ; Inoue, Yoshiaki ; Yip, Linda ; Hashiguchi, Naoyuki ; Zinkernagel, Annelies ; Nizet, Victor ; Insel, Paul A ; Junger, Wolfgang G</creatorcontrib><description>Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1132559</identifier><identifier>PMID: 17170310</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adenosine - metabolism ; Adenosine - pharmacology ; Adenosine A3 Receptor Agonists ; Adenosine A3 Receptor Antagonists ; Adenosine triphosphatase ; Adenosine Triphosphate - analogs &amp; derivatives ; Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - pharmacology ; Agonists ; Animal migration behavior ; Animals ; Autocrine Communication ; Bacteria ; Biological and medical sciences ; Cell adhesion &amp; migration ; Cell Membrane - metabolism ; Cell membranes ; Cell physiology ; Cellular biology ; Chemotaxis ; Chemotaxis, Leukocyte - drug effects ; Cytoplasmic Granules - metabolism ; Fundamental and applied biological sciences. Psychology ; HL-60 Cells ; Humans ; Hydrolysis ; Leukocytes ; Mice ; Mice, Knockout ; Molecular and cellular biology ; Motility and taxis ; Neutrophils ; Neutrophils - drug effects ; Neutrophils - metabolism ; Neutrophils - physiology ; Phagocytes ; Purinergic P2 Receptor Antagonists ; Receptor, Adenosine A3 - metabolism ; Receptors ; Receptors, Purinergic P2 - metabolism ; Receptors, Purinergic P2Y2 ; Signal amplification ; Signal Transduction ; Suramin - pharmacology</subject><ispartof>Science (American Association for the Advancement of Science), 2006-12, Vol.314 (5806), p.1792-1795</ispartof><rights>Copyright 2006 American Association for the Advancement of Science</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Association for the Advancement of Science Dec 15, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203</citedby><cites>FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20035049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20035049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,2870,2871,27903,27904,58217,58450</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18384786$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17170310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Corriden, Ross</creatorcontrib><creatorcontrib>Inoue, Yoshiaki</creatorcontrib><creatorcontrib>Yip, Linda</creatorcontrib><creatorcontrib>Hashiguchi, Naoyuki</creatorcontrib><creatorcontrib>Zinkernagel, Annelies</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Insel, Paul A</creatorcontrib><creatorcontrib>Junger, Wolfgang G</creatorcontrib><title>ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.</description><subject>Adenosine - metabolism</subject><subject>Adenosine - pharmacology</subject><subject>Adenosine A3 Receptor Agonists</subject><subject>Adenosine A3 Receptor Antagonists</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - analogs &amp; derivatives</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Agonists</subject><subject>Animal migration behavior</subject><subject>Animals</subject><subject>Autocrine Communication</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cell physiology</subject><subject>Cellular biology</subject><subject>Chemotaxis</subject><subject>Chemotaxis, Leukocyte - drug effects</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HL-60 Cells</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Leukocytes</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><subject>Neutrophils</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - metabolism</subject><subject>Neutrophils - physiology</subject><subject>Phagocytes</subject><subject>Purinergic P2 Receptor Antagonists</subject><subject>Receptor, Adenosine A3 - metabolism</subject><subject>Receptors</subject><subject>Receptors, Purinergic P2 - metabolism</subject><subject>Receptors, Purinergic P2Y2</subject><subject>Signal amplification</subject><subject>Signal Transduction</subject><subject>Suramin - pharmacology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFks1v1DAQxS0EokvhzAmIkOAWOh6vv47LCgpSBRW0B06R453QrLLJ1k4Q_PdMtRGVuOzJst9v3oz9LMRzCe-kRHOWY0t9JN4o1No_EAsJXpceQT0UCwBlSgdWn4gnOW8BWPPqsTiRVlpQEhbi_erqsvhGHYVMxfnUbigXX2ga07C_abtifUO7YQy_21z8akNxiT-wCP2mWCkuirQfh5SfikdN6DI9m9dTcf3xw9X6U3nx9fzzenVRRu3cWKoavbIOqal12ABabSHw2ME21tfGmEZGSZJi7RogxQcetNfBLzFE4gudircH330abifKY7Vrc6SuCz0NU66MQ41OHQeVQee8Xh4FUUpjpLNHQemXFtEig6__A7fDlHp-FjZT2mkOg6GzAxTTkHOiptqndhfSn0pCdRdrNcdazbFyxcvZdqp3tLnn5xwZeDMDIcfQNSn0sc33nFNuaZ1h7sWB22aO7p-O_FM0LO8avTroTRiq8DOxx_V3BKmA50JupP4C4726YA</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Chen, Yu</creator><creator>Corriden, Ross</creator><creator>Inoue, Yoshiaki</creator><creator>Yip, Linda</creator><creator>Hashiguchi, Naoyuki</creator><creator>Zinkernagel, Annelies</creator><creator>Nizet, Victor</creator><creator>Insel, Paul A</creator><creator>Junger, Wolfgang G</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T5</scope><scope>7X8</scope></search><sort><creationdate>20061215</creationdate><title>ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors</title><author>Chen, Yu ; Corriden, Ross ; Inoue, Yoshiaki ; Yip, Linda ; Hashiguchi, Naoyuki ; Zinkernagel, Annelies ; Nizet, Victor ; Insel, Paul A ; Junger, Wolfgang G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine - metabolism</topic><topic>Adenosine - pharmacology</topic><topic>Adenosine A3 Receptor Agonists</topic><topic>Adenosine A3 Receptor Antagonists</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - analogs &amp; derivatives</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Agonists</topic><topic>Animal migration behavior</topic><topic>Animals</topic><topic>Autocrine Communication</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cell physiology</topic><topic>Cellular biology</topic><topic>Chemotaxis</topic><topic>Chemotaxis, Leukocyte - drug effects</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HL-60 Cells</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Leukocytes</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><topic>Neutrophils</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - metabolism</topic><topic>Neutrophils - physiology</topic><topic>Phagocytes</topic><topic>Purinergic P2 Receptor Antagonists</topic><topic>Receptor, Adenosine A3 - metabolism</topic><topic>Receptors</topic><topic>Receptors, Purinergic P2 - metabolism</topic><topic>Receptors, Purinergic P2Y2</topic><topic>Signal amplification</topic><topic>Signal Transduction</topic><topic>Suramin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Corriden, Ross</creatorcontrib><creatorcontrib>Inoue, Yoshiaki</creatorcontrib><creatorcontrib>Yip, Linda</creatorcontrib><creatorcontrib>Hashiguchi, Naoyuki</creatorcontrib><creatorcontrib>Zinkernagel, Annelies</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Insel, Paul A</creatorcontrib><creatorcontrib>Junger, Wolfgang G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Immunology Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu</au><au>Corriden, Ross</au><au>Inoue, Yoshiaki</au><au>Yip, Linda</au><au>Hashiguchi, Naoyuki</au><au>Zinkernagel, Annelies</au><au>Nizet, Victor</au><au>Insel, Paul A</au><au>Junger, Wolfgang G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2006-12-15</date><risdate>2006</risdate><volume>314</volume><issue>5806</issue><spage>1792</spage><epage>1795</epage><pages>1792-1795</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>17170310</pmid><doi>10.1126/science.1132559</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2006-12, Vol.314 (5806), p.1792-1795
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_68252830
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Adenosine - metabolism
Adenosine - pharmacology
Adenosine A3 Receptor Agonists
Adenosine A3 Receptor Antagonists
Adenosine triphosphatase
Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - metabolism
Adenosine Triphosphate - pharmacology
Agonists
Animal migration behavior
Animals
Autocrine Communication
Bacteria
Biological and medical sciences
Cell adhesion & migration
Cell Membrane - metabolism
Cell membranes
Cell physiology
Cellular biology
Chemotaxis
Chemotaxis, Leukocyte - drug effects
Cytoplasmic Granules - metabolism
Fundamental and applied biological sciences. Psychology
HL-60 Cells
Humans
Hydrolysis
Leukocytes
Mice
Mice, Knockout
Molecular and cellular biology
Motility and taxis
Neutrophils
Neutrophils - drug effects
Neutrophils - metabolism
Neutrophils - physiology
Phagocytes
Purinergic P2 Receptor Antagonists
Receptor, Adenosine A3 - metabolism
Receptors
Receptors, Purinergic P2 - metabolism
Receptors, Purinergic P2Y2
Signal amplification
Signal Transduction
Suramin - pharmacology
title ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP%20Release%20Guides%20Neutrophil%20Chemotaxis%20via%20P2Y2%20and%20A3%20Receptors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chen,%20Yu&rft.date=2006-12-15&rft.volume=314&rft.issue=5806&rft.spage=1792&rft.epage=1795&rft.pages=1792-1795&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1132559&rft_dat=%3Cjstor_proqu%3E20035049%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c588t-3b293782efb5ad027570a132a7f79b666f1c1e1ecb8f0e366690595a942ace203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213585075&rft_id=info:pmid/17170310&rft_jstor_id=20035049&rfr_iscdi=true