Loading…
Single-Walled Carbon Nanotubes in the Intact Organism: Near-IR Imaging and Biocompatibility Studies in Drosophila
The ability of near-infrared fluorescence imaging to detect single-walled carbon nanotubes (SWNTs) in organisms and biological tissues has been explored using Drosophila melanogaster (fruit flies). Drosophila larvae were raised on food containing ∼10 ppm of disaggregated SWNTs. Their viability and g...
Saved in:
Published in: | Nano letters 2007-09, Vol.7 (9), p.2650-2654 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability of near-infrared fluorescence imaging to detect single-walled carbon nanotubes (SWNTs) in organisms and biological tissues has been explored using Drosophila melanogaster (fruit flies). Drosophila larvae were raised on food containing ∼10 ppm of disaggregated SWNTs. Their viability and growth were not reduced by nanotube ingestion. Near-IR nanotube fluorescence was imaged from intact living larvae, and individual nanotubes in dissected tissue specimens were imaged, structurally identified, and counted to estimate a biodistribution. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl0710452 |