Loading…
Biological parametric mapping: A statistical toolbox for multimodality brain image analysis
In recent years, multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality-specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2007, Vol.34 (1), p.137-143 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality-specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in Matlab with a user-friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely used
T-field, has been implemented in the correlation analysis for more accurate results. An example with in vivo data is presented, demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2006.09.011 |