Loading…
Quantitative protein dynamics from dominant folding pathways
We develop a theoretical approach to the protein-folding problem based on out-of-equilibrium stochastic dynamics. Within this framework, the computational difficulties related to the existence of large time scale gaps are removed, and simulating the entire reaction in atomistic details using existin...
Saved in:
Published in: | Physical review letters 2007-09, Vol.99 (11), p.118102-118102, Article 118102 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a theoretical approach to the protein-folding problem based on out-of-equilibrium stochastic dynamics. Within this framework, the computational difficulties related to the existence of large time scale gaps are removed, and simulating the entire reaction in atomistic details using existing computers becomes feasible. We discuss how to determine the most probable folding pathway, identify configurations representative of the transition state, and compute the most probable transition time. We perform an illustrative application of these ideas, studying the conformational evolution of alanine dipeptide, within an all-atom model based on the empiric GROMOS96 force field. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.99.118102 |