Loading…
Infinite-randomness fixed points for chains of non-Abelian quasiparticles
One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the i...
Saved in:
Published in: | Physical review letters 2007-10, Vol.99 (14), p.140405-140405, Article 140405 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the infinite-randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size L in these phases scales as S(L) approximately lnd/3 log(2)L for large L, where d is the quantum dimension of the particles. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.99.140405 |