Loading…
Glycomic mapping of pseudomucinous human ovarian cyst glycoproteins: Identification of Lewis and sialyl Lewis glycotopes
Expression of sialyl Lewis x (sLex) and sialyl Lewis a (sLea) on cell-surface glycoproteins endows cells with the ability to adhere to E-, P-, and L-selectins present on endothelia, platelets, or leukocytes. Special arrangements of these glycotopes in cancers are thought to play a key role in metast...
Saved in:
Published in: | Proteomics (Weinheim) 2007-10, Vol.7 (20), p.3699-3717 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Expression of sialyl Lewis x (sLex) and sialyl Lewis a (sLea) on cell-surface glycoproteins endows cells with the ability to adhere to E-, P-, and L-selectins present on endothelia, platelets, or leukocytes. Special arrangements of these glycotopes in cancers are thought to play a key role in metastasis. Previous studies have mostly described membrane-bound sLex and sLea activities. In this report, the major O-glycans of the secreted human ovarian cyst sialoglycoproteins from a Le(a+) nonsecretor individual (human ovarian cyst sample 350) were characterized by MS/MS analyses and immuno-/lectin-chemical assays. The results showed that HOC 350 carries a large number of epitopes for sLex, sLea, and Lea reactive antibodies. Advanced MS/MS sequencing coupled with mild periodate oxidation and exoglycosidase digestions further revealed that the O-glycans from HOC 350 are mostly of core 1 and 2 structures, extended and branched on the 3-arm with both type I and type II chains, complete with variable degrees of terminal sialylation and/or fucosylation to yield the sLex or sLea epitopes. Thus, the underlying core and peripheral backbone structures are similar to that of a previously proposed composite structural model for nonsialylated human ovarian cysts O-glycans, but with some notable distinguishing structural features in addition to sialylation. |
---|---|
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.200700356 |