Loading…

Purine-mediated signalling triggers eye development

A conserved network of eye field transcription factors (EFTFs) underlies the development of the eye in vertebrates and invertebrates. To direct eye development, Pax6, a key gene in this network, interacts with genes encoding other EFTFs such as Rx1 and Six3 (refs 4-6). However, the mechanisms that c...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2007-10, Vol.449 (7165), p.1058-1062
Main Authors: Bhamra, Surinder, Jones, Elizabeth A, Dale, Nicholas, Massé, Karine, Eason, Robert
Format: Article
Language:English
Subjects:
ATP
Eye
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A conserved network of eye field transcription factors (EFTFs) underlies the development of the eye in vertebrates and invertebrates. To direct eye development, Pax6, a key gene in this network, interacts with genes encoding other EFTFs such as Rx1 and Six3 (refs 4-6). However, the mechanisms that control expression of the EFTFs remain unclear. Here we show that purine-mediated signalling triggers both EFTF expression and eye development in Xenopus laevis. Overexpression of ectonucleoside triphosphate diphosphohydrolase 2 (E-NTPDase2), an ectoenzyme that converts ATP to ADP, caused ectopic eye-like structures, with occasional complete duplication of the eye, and increased expression of Pax6, Rx1 and Six3. In contrast, downregulation of endogenous E-NTPDase2 decreased Rx1 and Pax6 expression. E-NTPDase2 therefore acts upstream of these EFTFs. To test whether ADP (the product of E-NTPDase2) might act to trigger eye development through P2Y1 receptors, selective in Xenopus for ADP, we simultaneously knocked down expression of the genes encoding E-NTPDase2 and the P2Y1 receptor. This could prevent the expression of Rx1 and Pax6 and eye formation completely. We next measured ATP release in the presumptive eye field, demonstrating a transient release of ATP at a time that could plausibly trigger (once converted to ADP) expression of the EFTFs. This surprising role for transient purine-mediated signalling in eye development may be widely conserved, because alterations to the locus of E-NTPDase2 on human chromosome 9 cause severe head and eye defects, including microphthalmia. Our results suggest a new mechanism for the initiation of eye development.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature06189