Loading…
A Chemical Route to Graphene for Device Applications
Oxidation of graphite produces graphite oxide, which is dispersible in water as individual platelets. After deposition onto Si/SiO2 substrates, chemical reduction produces graphene sheets. Electrical conductivity measurements indicate a 10000-fold increase in conductivity after chemical reduction to...
Saved in:
Published in: | Nano letters 2007-11, Vol.7 (11), p.3394-3398 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidation of graphite produces graphite oxide, which is dispersible in water as individual platelets. After deposition onto Si/SiO2 substrates, chemical reduction produces graphene sheets. Electrical conductivity measurements indicate a 10000-fold increase in conductivity after chemical reduction to graphene. Tapping mode atomic force microscopy measurements show one to two layer graphene steps. Electrodes patterned onto a reduced graphite oxide film demonstrate a field effect response when the gate voltage is varied from +15 to −15 V. Temperature-dependent conductivity indicates that the graphene-like sheets exhibit semiconducting behavior. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl0717715 |