Loading…

Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents

Bioresorbable polymeric support devices (stents) are being developed in order to improve the biocompatibility and drug reservoir capacity of metal stents, as well as to offer a temporary alternative to permanent metallic stents. These temporary devices may be utilized for coronary, urethral, trachea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research 2005-08, Vol.74B (2), p.792-799
Main Authors: Zilberman, Meital, Nelson, Kevin D., Eberhart, Robert C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioresorbable polymeric support devices (stents) are being developed in order to improve the biocompatibility and drug reservoir capacity of metal stents, as well as to offer a temporary alternative to permanent metallic stents. These temporary devices may be utilized for coronary, urethral, tracheal, and other applications. The present study focuses on the mechanical properties of bioresorbable fibers as well as stents developed from these fibers. Fibers made of poly(L‐lactide) (PLLA), polydioxanone (PDS), and poly(glycolide‐co‐ϵ‐caprolactone) (PGACL) were studied in vitro. These fibers combine a relatively high initial strength and modulus together with sufficient ductility and flexibility, and were therefore chosen for use in stents. The effect of degradation on the tensile mechanical properties and morphology of these fibers was examined. The expandable stents developed from these fibers demonstrated excellent initial radial compression strength. The PLLA stents exhibited excellent in vitro degradation resistance and can therefore support body conduits such as blood vessels for prolonged periods of time. PDS and PGACL stents can afford good support for 5 and 2 weeks, respectively, and can therefore be utilized for short‐term applications. The degradation resistance of the stents correlates with the profile of mechanical property deterioration of the corresponding bioresorbable fibers. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2005
ISSN:1552-4973
0021-9304
1552-4981
DOI:10.1002/jbm.b.30319