Loading…
Reaction of Water-Stable C60 Aggregates with Ozone
While the reactivity of C60 has been described in a variety of organic solvents, little information is available regarding aqueous-based reactions due to solubility limitations. In this study, a reaction between C60, as a nanoscale suspension, and dissolved ozone in the aqueous phase was investigate...
Saved in:
Published in: | Environmental science & technology 2007-11, Vol.41 (21), p.7497-7502 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While the reactivity of C60 has been described in a variety of organic solvents, little information is available regarding aqueous-based reactions due to solubility limitations. In this study, a reaction between C60, as a nanoscale suspension, and dissolved ozone in the aqueous phase was investigated. Findings indicate a facile reaction occurs, resulting in aggregate dissolution concurrent with formation of water-soluble fullerene oxide species. Product analyses, including 13C NMR, MS (LDI), FTIR, UV−Vis, and XPS, indicate highly oxidized fullerene with an average of ∼29 oxygen additions per molecule, arranged in repeating hydroxyl and hemiketal functionalities. These findings are significant in that they (1) demonstrate the feasibility of other aqueous-based fullerene chemistries, including those for alternative synthesis routes, which might otherwise be considered prohibitive on the basis of solubility limitations, and (2) imply that the aqueous reactivity of fullerene-based materials must be considered appropriately for accurate assessment of their transport, fate, and potential risk(s) in environmental systems. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es0708058 |