Loading…

The Effect of Lateral Cortex Disruption and Repair on the Stability of the Medial Opening Wedge High Tibial Osteotomy

Background: Medial opening wedge high tibial osteotomy is gaining popularity as a treatment option for medial compartment degenerative disease in the young, active patient. One of the potential technical pitfalls of this procedure is inadvertent disruption of the lateral tibial cortex during distrac...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of sports medicine 2005-10, Vol.33 (10), p.1552-1557
Main Authors: Miller, Bruce S., Dorsey, William O. P., Bryant, Cari R., Austin, John C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Medial opening wedge high tibial osteotomy is gaining popularity as a treatment option for medial compartment degenerative disease in the young, active patient. One of the potential technical pitfalls of this procedure is inadvertent disruption of the lateral tibial cortex during distraction at the osteotomy site. Purpose: (1) To investigate the effect of lateral cortex disruption on stability during medial opening wedge high tibial osteotomy and (2) to evaluate 3 different methods of repair of the disrupted lateral cortex. Study Design: Controlled laboratory study. Methods: A total of 50 validated replicate tibias were evaluated in a medial opening wedge high tibial osteotomy model. Specimens were divided into 5 groups: (1) control, or intact lateral cortex (n = 10); (2) disrupted lateral cortex (n = 10); (3) lateral cortex repaired with 1 staple (n = 10); (4) lateral cortex repaired with 2 staples (n = 10); and (5) lateral cortex repaired with a periarticular plate and screws (n = 10). Specimens were placed in compression and torsion under physiologic loads, and stiffness and micromotion were calculated. Results: Disruption of the lateral cortex resulted in a 58% reduction in axial stiffness and a 68% reduction in torsional stiffness compared to control specimens ( P < .05). Disruption of the lateral cortex also resulted in increased micromotion at the osteotomy site. All 3 methods of repair of the lateral cortex restored stiffness and micromotion values to those of the control group ( P < .05). Conclusions: Instability at the osteotomy site may contribute to the high rate of delayed union or nonunion associated with medial opening wedge high tibial osteotomy. Repair of the lateral tibial cortex by each of these techniques restored stability to the osteotomy site in this replicate tibia model and might be effective in clinical use. However, more studies are needed to further explore the relationship between lateral cortex disruption and patient outcomes in the clinical setting before definitive conclusions can be drawn. Keywords: high tibial osteotomy (HTO) biomechanics
ISSN:0363-5465
1552-3365
DOI:10.1177/0363546505275488