Loading…

Migration and cyclic motion of a new short-stemmed hip prosthesis – a biomechanical in vitro study

Uncemented, short-stemmed hip prostheses have been developed to reduce the risk of stress shielding and to preserve femural bone stock. The long-term success of these implants is yet uncertain. Prerequisite for osseointegration is sufficient primary stability. In this study the cyclic motion and mig...

Full description

Saved in:
Bibliographic Details
Published in:Clinical biomechanics (Bristol) 2006-10, Vol.21 (8), p.834-840
Main Authors: Westphal, F.M., Bishop, N., Honl, M., Hille, E., Püschel, K., Morlock, M.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uncemented, short-stemmed hip prostheses have been developed to reduce the risk of stress shielding and to preserve femural bone stock. The long-term success of these implants is yet uncertain. Prerequisite for osseointegration is sufficient primary stability. In this study the cyclic motion and migration patterns of a new short-stemmed hip implant were compared with those for two clinically successful shaft prostheses. The prostheses were implanted in paired fresh human femura and loaded dynamically (gait cycle) with increasing load (max 2100 N) up to 15,000 cycles. Relative displacements between prosthesis and bone were recorded using a 3D-video analysis system. The short stem displayed a biphasic migration pattern with stabilisation at maximum load. Initial migration was predominantly into varus and was greater than that for the shaft prostheses. Failure occurred in cases of poor bone quality and malpositioning. Cyclic motion of the short prosthesis was less than that for the shaft prostheses. Surface finish showed no effect. System stiffness for the new stem was lower than for the shaft prostheses. The new stem tended to migrate initially more than the shaft prostheses, but stabilised when cortical contact was achieved or the cancellous bone was compacted sufficiently. Bone quality and correct positioning were important factors for the short stem. The lower cyclic motion of the new stem should be favourable for bony ingrowth. The lower system bending stiffness with the new implant indicated a more physiological loading of the bone and should thereby reduce the effects of stress shielding.
ISSN:0268-0033
1879-1271
DOI:10.1016/j.clinbiomech.2006.04.004