Loading…
Topical application of plasmid DNA to mouse and human skin
Gene expression following direct injection of naked plasmid DNA into the skin has been demonstrated in the past. Topical application of plasmid DNA represents an attractive route of gene delivery. If successful, it would have great prospects in skin gene therapy since it is painless and easy to appl...
Saved in:
Published in: | Journal of molecular medicine (Berlin, Germany) Germany), 2005-11, Vol.83 (11), p.897-903 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gene expression following direct injection of naked plasmid DNA into the skin has been demonstrated in the past. Topical application of plasmid DNA represents an attractive route of gene delivery. If successful, it would have great prospects in skin gene therapy since it is painless and easy to apply. In this study, we analyzed the expression of plasmid DNA in vivo and in vitro following topical application of plasmid DNA in various liposomal spray formulations. Therefore, different concentrations of plasmid DNA expressing enhanced green fluorescent protein (pEGFP-N1) were sprayed onto mouse or human skin once daily for three consecutive days and compared with direct injection. Gene expression was assessed 24 h after the final topical application of various liposomal DNA formulations. The results showed that EGFP mRNA and protein were detectable by RT-PCR and Western blot, respectively. However, epicutaneously applied EGFP plasmid DNA did not lead to microscopically detectable EGFP protein, when assessed by confocal laser microscopy or fluorescence-activated cell sorting in contrast to about 4% of fluorescent keratinocytes following intradermal injection. In an in vivo mouse model, the application of pEGFP-N1 DNA led to the generation of GFP-specific antibodies. These results indicate that topical spray application of pEGFP-N1 liposomal DNA formulations is a suitable method for plasmid DNA delivery to the skin, yielding limited gene expression. This spray method may thus be useful for DNA vaccination. To increase its attractiveness for skin gene therapy, the improvement of topical formulations with enhanced DNA absorption is desirable. |
---|---|
ISSN: | 0946-2716 1432-1440 |
DOI: | 10.1007/s00109-005-0669-x |