Loading…
In Silico Footprinting of Ligands Binding to the Minor Groove of DNA
The sequence selectivity of small molecules binding to the minor groove of DNA can be predicted by “in silico footprinting”. Any potential ligand can be docked in the minor groove and then moved along it using simple simulation techniques. By applying a simple scoring function to the trajectory afte...
Saved in:
Published in: | Journal of chemical information and modeling 2005-11, Vol.45 (6), p.1896-1907 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sequence selectivity of small molecules binding to the minor groove of DNA can be predicted by “in silico footprinting”. Any potential ligand can be docked in the minor groove and then moved along it using simple simulation techniques. By applying a simple scoring function to the trajectory after energy minimization, the preferred binding site can be identified. We show application to all known noncovalent binding modes, namely 1:1 ligand:DNA binding (including hairpin ligands) and 2:1 side-by-side binding, with various DNA base pair sequences and show excellent agreement with experimental results from X-ray crystallography, NMR, and gel-based footprinting. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/ci050153b |