Loading…

Binding of the Intracellular Fas Ligand (FasL) Domain to the Adaptor Protein PSTPIP Results in a Cytoplasmic Localization of FasL

The tumor necrosis factor family member Fas ligand (FasL) induces apoptosis in Fas receptor-expressing target cells and is an important cytotoxic effector molecule used by CTL- and NK-cells. In these hematopoietic cells, newly synthesized FasL is stored in specialized secretory lysosomes and only de...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-12, Vol.280 (48), p.40012-40024
Main Authors: Baum, Wiebke, Kirkin, Vladimir, Fernández, Sara B. Mateus, Pick, Robert, Lettau, Marcus, Janssen, Ottmar, Zörnig, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tumor necrosis factor family member Fas ligand (FasL) induces apoptosis in Fas receptor-expressing target cells and is an important cytotoxic effector molecule used by CTL- and NK-cells. In these hematopoietic cells, newly synthesized FasL is stored in specialized secretory lysosomes and only delivered to the cell surface upon activation and target cell recognition. FasL contains an 80-amino acid-long cytoplasmic tail, which includes a proline-rich domain as a bona fide Src homology 3 domain-binding site. This proline-rich domain has been implicated in FasL sorting to secretory lysosomes, and it may also be important for reverse signaling via FasL, which has been described to influence T-cell activation. Here we report the identification of the Src homology 3 domain-containing adaptor protein PSTPIP as a FasL-interacting partner, which binds to the proline-rich domain. PSTPIP co-expression leads to an increased intracellular localization of Fas ligand, thereby regulating extracellular availability and cytotoxic activity of the molecule. In addition, we demonstrate recruitment of the tyrosine phosphatase PTP-PEST by PSTPIP into FasL·PSTPIP·PTP-PEST complexes which may contribute to FasL reverse signaling.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M502222200