Loading…
Localization and Characterization of an Orphan Receptor, Guanylyl Cyclase-G, in Mouse Testis and Sperm
We recently identified a novel testis-enriched receptor guanylyl cyclase (GC) in the mouse, designated mGC-G. To further investigate its protein expression and function, we generated a neutralizing antibody specifically against the extracellular domain of this receptor. RT-PCR and immunohistochemica...
Saved in:
Published in: | Endocrinology (Philadelphia) 2006-10, Vol.147 (10), p.4792-4800 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We recently identified a novel testis-enriched receptor guanylyl cyclase (GC) in the mouse, designated mGC-G. To further investigate its protein expression and function, we generated a neutralizing antibody specifically against the extracellular domain of this receptor. RT-PCR and immunohistochemical analyses show that mGC-G is predominantly expressed from round spermatids to spermatozoa in mouse testis at both the mRNA and protein levels. Flow cytometry and confocal immunofluorescence reveal that mGC-G is a cell surface protein restricted to the plasma membrane overlying the acrosome and midpiece of the flagellum in mature sperm. Interestingly, Western blot analysis demonstrates that testicular mGC-G is approximately 180 kDa but is subject to limited proteolysis during epididymal sperm transport, resulting in a smaller fragment tethered on the mature sperm surface. On Fluo-3 cytometrical analysis and computer-assisted sperm assay, we found that serum albumin-induced elevation of sperm intracellular Ca2+ concentration, protein tyrosine phosphorylation, and progressive motility associated with capacitation are markedly reduced by preincubation of the anti-mGC-G neutralizing antibody. Together, these results indicate that mGC-G is proteolytically modified in mature sperm membrane and suggest that mGC-G-mediated signaling may play a critical role in gamete/reproductive biology. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2005-1476 |