Loading…

Predicting New Molecular Species of Potential Interest to Atmospheric Chemistry: The Isomers HSBr and HBrS

Coupled cluster singles and doubles with perturbative contributions of connected triples CCSD(T) theory with a series of correlation consistent basis sets was used to predict the existence and characterize for the first time the structures, harmonic frequencies, and energetic quantities of the isome...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2007-01, Vol.111 (3), p.521-525
Main Authors: Aoto, Yuri Alexandre, Ornellas, Fernando R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coupled cluster singles and doubles with perturbative contributions of connected triples CCSD(T) theory with a series of correlation consistent basis sets was used to predict the existence and characterize for the first time the structures, harmonic frequencies, and energetic quantities of the isomeric species HSBr and HBrS, as well as the transition state connecting them. These calculations consider extrapolation to the complete basis set (CBS) limit, corrections for scalar relativistic effects using the second-order Douglas−Kroll−Hess Hamiltonian, and also correlation of the bromine d electrons in addition to the 14 valence electrons. The species HSBr was found to be more stable than HBrS by 50.93 kcal/mol, with a high barrier height of 60.00 kcal/mol for the interconversion into HBrS. The smaller barrier of 7.90 kcal/mol (ZPE included) for the reverse process, however, should favor a rapid interconversion of HBrS into HSBr if HBrS can also be initially present in a potential synthetic route. If trapped in a matrix, their harmonic frequencies will allow for an unambiguous distinction between the two species. Scalar relativistic corrections and correlation of 24 electrons, although minor for the present purpose of a first time, but accurate, characterization of these species, are needed if chemical accuracy is also pursued. A test of the DFT/B3LYP approach in describing this type of system resulted in good energetic quantities, but geometric parameters and frequencies still lack spectroscopic accuracy. Whether HSBr can act as a temporary bromine reservoir and/or a source of reactive bromine and HS radicals requires further studies that are underway in our group.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp0665123