Loading…

Biosynthesis of polyunsaturated fatty acids in lower eukaryotes

Polyunsaturated fatty acids have important structural roles in cell membranes. They are also intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediate fever, inflammation, blood pressure and neurotransmission. Arachidonic and docosahexaenoic acids are essenti...

Full description

Saved in:
Bibliographic Details
Published in:IUBMB life 2006-10, Vol.58 (10), p.563-571
Main Author: Uttaro, Antonio D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyunsaturated fatty acids have important structural roles in cell membranes. They are also intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediate fever, inflammation, blood pressure and neurotransmission. Arachidonic and docosahexaenoic acids are essential components of brain tissues and, through their involvement in the development of neural and retinal functions, important dietary nutrients for neonatal babies. Lower eukaryotes are particularly rich in C20‐22 polyunsaturated fatty acids. Fungi and marine microalgae are currently used to produce nutraceutic oils. Other protists and algae are being studied because of the variability in their enzymes involved in polyunsaturated fatty acid biosynthesis. Such enzymes could be used as source for the production of transgenic organisms able to synthesize designed oils for human diet or, in the case of parasitic protozoa, they might be identified as putative chemotherapeutic targets. Polyunsaturated fatty acids can be synthesized by two different pathways: an anaerobic one, by using polyketide synthase related enzymes, and an aerobic one, which involves the action of elongases and oxygen dependent desaturases. Desaturases can be classified into three main types, depending on which of the consecutive steps of polyunsaturated fatty acid synthesis they are involved with. The enzymes may be specialized to act on: saturated substrates (type I); mono‐ and di‐unsaturated fatty acids by introducing additional double bonds at the methyl‐end site of the existing double bonds (type II); or the carboxy half ('front‐end') of polyunsaturated ones (type III). Type III desaturases require the alternating action of elongases. A description of the enzymes that have been isolated and functionally characterized is provided, in order to highlight the different pathways found in lower eukaryotes. iubmb Life, 58: 563‐571, 2006
ISSN:1521-6543
1521-6551
DOI:10.1080/15216540600920899