Loading…
Survey and expression analysis of five new chitin synthase genes in the biotrophic rust fungus Puccinia graminis
We have isolated and characterised the first set of chitin synthase genes from a rust fungus, a large group of economically highly important, obligately biotrophic plant pathogens. Puccinia graminis was used as a model organism for the rust fungi which are not well investigated on the molecular leve...
Saved in:
Published in: | Current genetics 2006-11, Vol.50 (5), p.295-305 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have isolated and characterised the first set of chitin synthase genes from a rust fungus, a large group of economically highly important, obligately biotrophic plant pathogens. Puccinia graminis was used as a model organism for the rust fungi which are not well investigated on the molecular level today. One of the major structural components of most fungal cell walls is the chitin polymer which is synthesised by a family of enzymes called chitin synthases. In P. graminis, we have isolated five new chitin synthase genes from four different classes, chsII, chsIIIa, chsIIIb, chsIV, and chsV. The genes contain a high number of introns, unusual for other known fungal chitin synthases. The dinucleic stage of the fungus seems to contain two slightly different genes or alleles for four isoforms. One isoform, chsIIIa, seems to be expressed only in the youngest stages of fungal growth. Analysis of the derived proteins shows that together with other basidiomycete CHS, the pgtCHS form separate subgroups in the phylogenetic tree. This set of five rust chitin synthase genes, with some unusual features compared to known fungal chitin synthases, allows new insights into chitin synthase classification, and may help in the development of novel functional fungicides. |
---|---|
ISSN: | 0172-8083 1432-0983 |
DOI: | 10.1007/s00294-006-0094-x |