Loading…
Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles
Abstract In an effort to develop an alternative formulation of paclitaxel suitable for parenteral administration, paclitaxel-loaded sterically stabilized solid lipid nanoparticles (SLNs) were prepared, characterized and examined for in vitro cytotoxicity. The SLNs, comprising trimyristin (TM) as a s...
Saved in:
Published in: | Biomaterials 2007-04, Vol.28 (12), p.2137-2146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In an effort to develop an alternative formulation of paclitaxel suitable for parenteral administration, paclitaxel-loaded sterically stabilized solid lipid nanoparticles (SLNs) were prepared, characterized and examined for in vitro cytotoxicity. The SLNs, comprising trimyristin (TM) as a solid lipid core and egg phosphatidylcholine and pegylated phospholipid as stabilizers, were prepared using a hot homogenization method. Regardless of paclitaxel loading, the particle sizes and zeta potentials of the prepared SLNs were around 200 nm and −38 mV, respectively, suggesting that they would be suitable as a parenteral formulation. Cryo-scanning electron microscopy showed that the SLNs were homogeneous and spherical in shape, while differential scanning calorimetry measurement of the melting peak revealed that the TM exists as a solid in our formulation. Paclitaxel was loaded to the solid cores at a w/w ratio of 6%. Gel column chromatography showed that paclitaxel co-eluted with the phospholipids, indicating that paclitaxel was incorporated in the SLNs. An in vitro drug release study showed that paclitaxel was released from the SLNs in a slow but time-dependent manner. Furthermore, treatment of the OVCAR-3 human ovarian cancer cell line and the MCF-7 breast cancer cell line with paclitaxel-loaded SLNs yielded cytotoxicities comparable to those of a commercially available Cremophor EL-based paclitaxel formulation. These results collectively suggest that our optimized SLN formulation may have a potential as alternative delivery system for parenteral administration of paclitaxel. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2007.01.014 |