Loading…

Molecular characterization and oligosaccharide-binding properties of a galectin from the argasid tick Ornithodoros moubata

The argasid tick Ornithodoros moubata is a vector of various viral and borrelian diseases in animals and humans. We report here molecular characterization and oligosaccharide-binding properties of a novel galectin (OmGalec) from this tick. OmGalec consisted of 333 amino acids with a predicted molecu...

Full description

Saved in:
Bibliographic Details
Published in:Glycobiology (Oxford) 2007-03, Vol.17 (3), p.313-323
Main Authors: Huang, Xiaohong, Tsuji, Naotoshi, Miyoshi, Takeharu, Nakamura-Tsuruta, Sachiko, Hirabayashi, Jun, Fujisaki, Kozo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The argasid tick Ornithodoros moubata is a vector of various viral and borrelian diseases in animals and humans. We report here molecular characterization and oligosaccharide-binding properties of a novel galectin (OmGalec) from this tick. OmGalec consisted of 333 amino acids with a predicted molecular weight of 37.4 kDa. Its amino acid sequence did not contain a signal peptide or transmembrane domain. It possessed tandem-repeated carbohydrate recognition domains, in which the typical motifs important for carbohydrate affinity were conserved. OmGalec was expressed both transcriptionally and translationally at all stages of the tick life cycle and in multiple organs and was abundant in hemocytes, midguts, and reproductive organs, which are of importance in immunity, interaction with pathogens, and development, respectively, suggesting that OmGalec is a multifunctional molecule. The oligosaccharide affinity profile analyzed by applying an automated frontal affinity chromatography system revealed that rOmGalec showed a general feature of the galectin family, i.e. significant affinity for lactosamine-type disaccharides, Galβ1-3(4)Glc(NAc), via recognition of 4-OH and 6-OH of galactose and 3 (4)-OH of Glc(NAc). Its preference for type I saccharides and α1-3GalNAc-containing oligosaccharides might provide clues for identifying its ligands and its potential multiple functions. Our results may contribute to the elucidation of galectin functions in the development and immunity of arthropods and/or vector and pathogen interaction and provide valuable information for the development of novel tick control strategies.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cwl070