Loading…

Submandibular Glands Contribute to Increases in Plasma BDNF Levels

Brain-derived neurotrophic factor (BDNF) promotes survival and differentiation of neural cells in the central and peripheral nervous systems. BDNF has been detected in plasma, but its source has not yet been established. Expression of BDNF mRNA has been identified in the submandibular glands when ma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dental research 2007-03, Vol.86 (3), p.260-264
Main Authors: Tsukinoki, K., Saruta, J., Muto, N., Sasaguri, K., Sato, S., Tan-Ishii, N., Watanabe, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain-derived neurotrophic factor (BDNF) promotes survival and differentiation of neural cells in the central and peripheral nervous systems. BDNF has been detected in plasma, but its source has not yet been established. Expression of BDNF mRNA has been identified in the submandibular glands when male rats are exposed to acute immobilization stress. In the present study, we investigated whether plasma BDNF is influenced by the submandibular glands in this model. Acute immobilization stress for 60 min significantly increased the level of plasma BDNF. However, plasma BDNF elevation was markedly suppressed in bilaterally sialoadenectomized rats. There were no significant differences between stressed (60 min) and non-stressed rats with respect to the BDNF mRNA expression in the hippocampus, heart, lung, liver, pancreas, or spleen, as determined by real-time polymerase chain-reaction. These findings suggest that the submandibular glands may be the primary source of plasma BDNF in conditions of acute immobilization stress.
ISSN:0022-0345
1544-0591
DOI:10.1177/154405910708600312