Loading…
Relation of myocardial perfusion at rest and during pharmacologic stress to the PET patterns of tissue viability in patients with severe left ventricular dysfunction
Stress perfusion imaging can assess effectively the amount of jeopardized myocardium, but its use for identifying underperfused but viable myocardium has yielded variable results. We evaluated the relation between measurements of myocardial perfusion at rest and during pharmacologic stress and the p...
Saved in:
Published in: | Journal of nuclear cardiology 1998-11, Vol.5 (6), p.558-566 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stress perfusion imaging can assess effectively the amount of jeopardized myocardium, but its use for identifying underperfused but viable myocardium has yielded variable results. We evaluated the relation between measurements of myocardial perfusion at rest and during pharmacologic stress and the patterns of tissue viability as determined by positron emission tomographic (PET) imaging.
We studied 33 patients with coronary artery disease and left ventricular (LV) dysfunction (LV ejection fraction, 30%+/-8%). PET imaging was used to evaluate regional myocardial perfusion at rest and during pharmacologic stress with [13N]-ammonia as a flow tracer, and to delineate patterns of tissue viability (i.e., perfusion-metabolism mismatch or match) using [18F]-deoxyglucose (FDG). We analyzed 429 myocardial regions, of which 229 were dysfunctional at rest. Of these, 30 had normal perfusion and 199 were hypoperfused. A severe resting defect (deficit >40% below normal) predicted lack of significant tissue viability; 31 of 35 regions (89%) had a PET match pattern denoting transmural fibrosis. Although regions with mild or moderate resting defects (deficit |
---|---|
ISSN: | 1071-3581 1532-6551 |
DOI: | 10.1016/S1071-3581(98)90109-X |