Loading…
Generalized Voice-Leading Spaces
Western musicians traditionally classify pitch sequences by disregarding the effects of five musical transformations: octave shift, permutation, transposition, inversion, and cardinality change. We model this process mathematically, showing that it produces 32 equivalence relations on chords, 243 eq...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2008-04, Vol.320 (5874), p.346-348 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Western musicians traditionally classify pitch sequences by disregarding the effects of five musical transformations: octave shift, permutation, transposition, inversion, and cardinality change. We model this process mathematically, showing that it produces 32 equivalence relations on chords, 243 equivalence relations on chord sequences, and 32 families of geometrical quotient spaces, in which both chords and chord sequences are represented. This model reveals connections between music-theoretical concepts, yields new analytical tools, unifies existing geometrical representations, and suggests a way to understand similarity between chord types. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1153021 |