Loading…

Hydrophilic Interaction Liquid Chromatography−Tandem Mass Spectrometry Determination of Estrogen Conjugates in Human Urine

We report a hydrophilic interaction liquid chromatography (HILIC) separation with tandem mass spectrometry (MS) detection method for analysis of seven urinary estrogen conjugates. HILIC separation employing a mobile phase with high organic solvent content resulted in enhanced electrospray ionization...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2008-05, Vol.80 (9), p.3404-3411
Main Authors: Qin, Feng, Zhao, Yuan-Yuan, Sawyer, Michael B, Li, Xing-Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a hydrophilic interaction liquid chromatography (HILIC) separation with tandem mass spectrometry (MS) detection method for analysis of seven urinary estrogen conjugates. HILIC separation employing a mobile phase with high organic solvent content resulted in enhanced electrospray ionization efficiency and MS sensitivity compared with reversed-phase (RP) LC−MS methods. Solid-phase extraction (SPE) was used to further improve the limit of detection and to eliminate interferences for the analysis of urine samples. No hydrolysis or derivatization was required in the sample pretreatment. This SPE/HILIC−MS/MS method provided limits of quantification (LOQs at S/N = 10) for the seven conjugates ranging from 2 to 1000 pg/mL with only 1 mL of urine sample, representing an improvement of 1 order of magnitude over the RPLC tandem MS methods previously reported. This method provided a linear dynamic range of 3 orders of magnitude, recovery of 92−109%, intraday accuracy of 84−109%, intraday precision of 1−14%, interday accuracy of 80−111%, and interday precision of 1−22%. We have successfully applied this technique to determine the seven estrogen conjugates in urine samples of a pregnant woman and found unique concentration changes of six estrogen conjugates at different stages of pregnancy while the concentration of estriol-3-glucuronide (E3-3G) remained constant. We further studied the profiles of individual estrogen conjugates in breast cancer patients before and after treatment and found patient-dependent effects of aromatase inhibitor treatment on estrogen phase-II metabolism, which have not been reported previously. This study demonstrates the potential clinical application of the HILIC−MS/MS technique for sensitive monitoring of the changes of urinary estrogen conjugates in a clinical setting.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac702613k