Loading…

Cholesterol-rich domains are involved in Bordetella pertussis phagocytosis and intracellular survival in neutrophils

Bordetella pertussis-specific antibodies protect against whooping cough by facilitating host defense mechanisms such as phagocytosis. However, the mechanism involved in the phagocytosis of the bacteria under non-opsonic conditions is still poorly characterized. We report here that B. pertussis bindi...

Full description

Saved in:
Bibliographic Details
Published in:Microbial pathogenesis 2008-06, Vol.44 (6), p.501-511
Main Authors: Lamberti, Yanina, Perez Vidakovics, Maria Laura, van der Pol, Ludo-W., Rodríguez, Maria Eugenia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bordetella pertussis-specific antibodies protect against whooping cough by facilitating host defense mechanisms such as phagocytosis. However, the mechanism involved in the phagocytosis of the bacteria under non-opsonic conditions is still poorly characterized. We report here that B. pertussis binding and internalization is cholesterol dependent. Furthermore, we found cholesterol to be implicated in B. pertussis survival upon interaction with human neutrophils. Pre-treatment of PMN with cholesterol sequestering drugs like nystatin or methyl-β-cyclodextrin (MβCD) resulted in a drastic decrease of uptake of non-opsonized B. pertussis. Conversely, phagocytosis of opsonized bacteria was not affected by these drugs, showing that cholesterol depletion affects neither the viability of PMN nor the route of entry of opsonized B. pertussis. Additionally, intracellular survival rate of non-opsonized bacteria was significantly decreased in cholesterol-depleted PMN. Accordingly, confocal laser microscopy studies showed that non-opsonized B. pertussis co-localized with lysosomal markers only in cholesterol-depleted PMN but not in normal PMN. Our results indicate that B. pertussis docks to molecules that eventually prevent cellular bactericidal activity.
ISSN:0882-4010
1096-1208
DOI:10.1016/j.micpath.2008.01.002