Loading…
A comparison of homologous developmental genes from Drosophila and Tribolium reveals major differences in length and trinucleotide repeat content
The flour beetle Tribolium castaneum has become an important model organism for comparative studies of insect development. Many developmentally important genes have now been cloned from both Tribolium and Drosophila and their expression characteristics were studied. We analyze here the complete codi...
Saved in:
Published in: | Journal of molecular evolution 1999-11, Vol.49 (5), p.558-566 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The flour beetle Tribolium castaneum has become an important model organism for comparative studies of insect development. Many developmentally important genes have now been cloned from both Tribolium and Drosophila and their expression characteristics were studied. We analyze here the complete coding sequences of 17 homologous gene pairs from D. melanogaster and T. castaneum, most of which encode transcription factors. We find that the Tribolium genes are on average 30% shorter than their Drosophila homologues. This appears to be due largely to the almost-complete absence of trinucleotide repeats in the coding sequences of Tribolium as well as the generally lower degree of internal repetitiveness. Clusters of polar and other amino acids such as glutamine, proline, and serine, which are often considered to be important for transcriptional activation domains in Drosophila, are almost completely absent in Tribolium. Codon usage is generally less biased in Tribolium, although we find a similar tendency for the preference of G- or C-ending codons and a higher bias in conserved subregions of the proteins as in Drosophila. Most of the aminoacid substitutions in the DNA-binding domains of the transcription factors occur at residues that do not make a specific contact to DNA, suggesting that the recognition sequences are likely to be conserved between the two species. |
---|---|
ISSN: | 0022-2844 1432-1432 |
DOI: | 10.1007/PL00006577 |